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What is Clustering ? 
The task of grouping data points based on their similarity with each other is called 
Clustering or Cluster Analysis. This method is defined under the branch of Unsupervised 
Learning,  
 
It evaluates the similarity based on a metric like Euclidean distance, Cosine similarity, 
Manhattan distance, etc. and then group the points with highest similarity score together. 

 
For Example, In the graph given below, we can clearly see that there are 3 circular 
clusters forming on the basis of distance. 

 

Now it is not necessary that the clusters formed must be circular in shape. The shape of 
clusters can be arbitrary. There are many algortihms that work well with detecting 
arbitrary shaped clusters.  
For example, In the below given graph we can see that the clusters formed are not 
circular in shape. 

 

Types of Clustering 
Broadly speaking, there are 2 types of clustering that can be performed to group similar 
data points: 
 Hard Clustering: In this type of clustering, each data point belongs to a cluster 

completely or not. For example, Let’s say there are 4 data point and we have to 
cluster them into 2 clusters. So each data point will either belong to cluster 1 or 
cluster 2. 

Data Points Clusters 

A C1 

https://www.geeksforgeeks.org/supervised-unsupervised-learning/
https://www.geeksforgeeks.org/supervised-unsupervised-learning/
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Data Points Clusters 

B C2 

C C2 

D C1 

 Soft Clustering: In this type of clustering, instead of assigning each data point into a 
separate cluster, a probability or likelihood of that point being that cluster is evaluated. 
For example, Let’s say there are 4 data point and we have to cluster them into 2 
clusters. So we will be evaluating a probability of a data point belonging to both 
clusters. This probability is calculated for all data points. 

Data Points Probability of C1 Probability of C2 

A 0.91 0.09 

B 0.3 0.7 

C 0.17 0.83 

D 1 0 

Uses of Clustering 
Now before we begin with types of clustering algorithms, we will go through the use 
cases of Clustering algorithms. Clustering algorithms are majorly used for: 
 Market Segmentation – Businesses use clustering to group their customers and use 

targeted advertisements to attract more audience. 
 Market Basket Analysis – Shop owners analyze their sales and figure out which items 

are majorly bought together by the customers. For example, In USA, according to a 
study diapers and beers were usually bought together by fathers. 

 Social Network Analysis – Social media sites use your data to understand your 
browsing behaviour and provide you with targeted friend recommendations or content 
recommendations. 

 Medical Imaging – Doctors use Clustering to find out diseased areas in diagnostic 
images like X-rays. 

 Anomaly Detection – To find outliers in a stream of real-time dataset or forecasting 
fraudulent transactions  

 

K-Means Clustering Algorithm 
K-Means Clustering is an unsupervised learning algorithm that is used to solve the clustering problems in 
machine learning or data science 

https://www.geeksforgeeks.org/customer-segmentation-using-unsupervised-machine-learning-in-python/
https://www.geeksforgeeks.org/market-basket-analysis-in-data-mining/
https://www.geeksforgeeks.org/social-network-analysis-using-r-programming/
https://www.geeksforgeeks.org/machine-learning-for-anomaly-detection/
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What is K-Means Algorithm? 

. Here K defines the number of pre-defined clusters that need to be created in the process, as if K=2, 
there will be two clusters, and for K=3, there will be three clusters, and so on. 

It is an iterative algorithm that divides the unlabeled dataset into k different clusters in such a way that each 

dataset belongs only one group that has similar properties. 

It allows us to cluster the data into different groups and a convenient way to discover the categories of 
groups in the unlabeled dataset on its own without the need for any training. 

The algorithm takes the unlabeled dataset as input, divides the dataset into k-number of clusters, and 
repeats the process until it does not find the best clusters. The value of k should be predetermined in this 
algorithm. 

The k-means clustering algorithm mainly performs two tasks: 

o Determines the best value for K center points or centroids by an iterative process. 
o Assigns each data point to its closest k-center. Those data points which are near to the particular k-

center, create a cluster. 

The below diagram explains the working of the K-means Clustering Algorithm: 

 

How does the K-Means Algorithm Work? 

The working of the K-Means algorithm is explained in the below steps: 

Step-1: Select the number K to decide the number of clusters. 

Step-2: Select random K points or centroids. (It can be other from the input dataset). 

Step-3: Assign each data point to their closest centroid, which will form the predefined K clusters. 

Step-4: Calculate the variance and place a new centroid of each cluster. 

Step-5: Repeat the third steps, which means reassign each datapoint to the new closest centroid of each 
cluster. 

Step-6: If any reassignment occurs, then go to step-4 else go to FINISH. 

Step-7: The model is ready. 

Let's understand the above steps by considering the visual plots: 

https://www.javatpoint.com/clustering-in-machine-learning
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Suppose we have two variables M1 and M2. The x-y axis scatter plot of these two variables is given 
below: 

 

o Let's take number k of clusters, i.e., K=2, to identify the dataset and to put them into different clusters. It 
means here we will try to group these datasets into two different clusters. 

o We need to choose some random k points or centroid to form the cluster. These points can be either 
the points from the dataset or any other point. So, here we are selecting the below two points as k 
points, which are not the part of our dataset. Consider the below image: 

 
o Now we will assign each data point of the scatter plot to its closest K-point or centroid. We will compute 

it by applying some mathematics that we have studied to calculate the distance between two points. 
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So, we will draw a median between both the centroids. Consider the below image: 

 

From the above image, it is clear that points left side of the line is near to the K1 or blue centroid, and 
points to the right of the line are close to the yellow centroid. Let's color them as blue and yellow for clear 
visualization. 

 

o As we need to find the closest cluster, so we will repeat the process by choosing a new centroid. To 
choose the new centroids, we will compute the center of gravity of these centroids, and will find new 
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centroids as below: 

 
o Next, we will reassign each datapoint to the new centroid. For this, we will repeat the same process of 

finding a median line. The median will be like below image: 

 

From the above image, we can see, one yellow point is on the left side of the line, and two blue points are 
right to the line. So, these three points will be assigned to new centroids. 

 

As reassignment has taken place, so we will again go to the step-4, which is finding new centroids or K-
points. 
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o We will repeat the process by finding the center of gravity of centroids, so the new centroids will be as 
shown in the below image: 

 
o As we got the new centroids so again will draw the median line and reassign the data points. So, the 

image will be: 

 
o We can see in the above image; there are no dissimilar data points on either side of the line, which 

means our model is formed. Consider the below image: 

 

As our model is ready, so we can now remove the assumed centroids, and the two final clusters will be as 
shown in the below image: 
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What is Dimensionality Reduction? 

The number of input features, variables, or columns present in a given dataset is known as 
dimensionality, and the process to reduce these features is called dimensionality reduction. 

A dataset contains a huge number of input features in various cases, which makes the predictive 
modeling task more complicated. Because it is very difficult to visualize or make predictions for the 
training dataset with a high number of features, for such cases, dimensionality reduction techniques are 
required to use. 

Dimensionality reduction technique can be defined as, "It is a way of converting the higher 
dimensions dataset into lesser dimensions dataset ensuring that it provides similar 
information." These techniques are widely used in machine learning for obtaining a better fit predictive 
model while solving the classification and regression problems. 

 

The Curse of Dimensionality 

Handling the high-dimensional data is very difficult in practice, commonly known as the curse of 
dimensionality. If the dimensionality of the input dataset increases, any machine learning algorithm and 
model becomes more complex. As the number of features increases, the number of samples also gets 
increased proportionally, and the chance of overfitting also increases. If the machine learning model is 
trained on high-dimensional data, it becomes overfitted and results in poor performance. 

Hence, it is often required to reduce the number of features, which can be done with dimensionality 
reduction. 

https://www.javatpoint.com/machine-learning
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Benefits of applying Dimensionality Reduction 

Some benefits of applying dimensionality reduction technique to the given dataset are given below: 

 

o By reducing the dimensions of the features, the space required to store the dataset also gets reduced. 
o Less Computation training time is required for reduced dimensions of features. 
o Reduced dimensions of features of the dataset help in visualizing the data quickly. 
o It removes the redundant features (if present) by taking care of multicollinearity. 

Disadvantages of dimensionality Reduction 

There are also some disadvantages of applying the dimensionality reduction, which are given below: 

o Some data may be lost due to dimensionality reduction. 
o In the PCA dimensionality reduction technique, sometimes the principal components required to 

consider are unknown. 

Approaches of Dimension Reduction 

There are two ways to apply the dimension reduction technique, which are given below: 

Feature Selection 
Feature selection is the process of selecting the subset of the relevant features and leaving out the 
irrelevant features present in a dataset to build a model of high accuracy. In other words, it is a way of 
selecting the optimal features from the input dataset. 

 

Three methods are used for the feature selection: 

1. Filters Methods 

In this method, the dataset is filtered, and a subset that contains only the relevant features is taken. Some 
common techniques of filters method are: 

o Correlation 
o Chi-Square Test 
o ANOVA 
o Information Gain, etc. 

2. Wrappers Methods 

The wrapper method has the same goal as the filter method, but it takes a machine learning model for its 
evaluation. In this method, some features are fed to the ML model, and evaluate the performance. The 
performance decides whether to add those features or remove to increase the accuracy of the model. 
This method is more accurate than the filtering method but complex to work. Some common techniques of 
wrapper methods are: 

o Forward Selection 
o Backward Selection 
o Bi-directional Elimination 
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3. Embedded Methods: Embedded methods check the different training iterations of the machine 
learning model and evaluate the importance of each feature. Some common techniques of Embedded 
methods are: 

 

o LASSO 
o Elastic Net 
o Ridge Regression, etc. 

Feature Extraction: 
Feature extraction is the process of transforming the space containing many dimensions into space with 
fewer dimensions. This approach is useful when we want to keep the whole information but use fewer 
resources while processing the information. 

Some common feature extraction techniques are: 

1. Principal Component Analysis 
2. Linear Discriminant Analysis 
3. Kernel PCA 
4. Quadratic Discriminant Analysis 

Common techniques of Dimensionality Reduction 

1. Principal Component Analysis 
2. Backward Elimination 
3. Forward Selection 
4. Score comparison 
5. Missing Value Ratio 
6. Low Variance Filter 
7. High Correlation Filter 
8. Random Forest 
9. Factor Analysis 
10. Auto-Encoder 

Principal Component Analysis (PCA) 
Principal Component Analysis is a statistical process that converts the observations of correlated features 
into a set of linearly uncorrelated features with the help of orthogonal transformation. These new 
transformed features are called the Principal Components. It is one of the popular tools that is used for 
exploratory data analysis and predictive modeling. 

PCA works by considering the variance of each attribute because the high attribute shows the good split 
between the classes, and hence it reduces the dimensionality. Some real-world applications of PCA 
are image processing, movie recommendation system, optimizing the power allocation in various 
communication channels. 

KERNEL PCA: PCA is a linear method. That is it can only be applied to datasets which 
are linearly separable. It does an excellent job for datasets, which are linearly separable. 
But, if we use it to non-linear datasets, we might get a result which may not be the 
optimal dimensionality reduction. Kernel PCA uses a kernel function to project dataset 
into a higher dimensional feature space, where it is linearly separable. It is similar to the 
idea of Support Vector Machines. There are various kernel methods like linear, 
polynomial, and gaussian.  
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Kernel Principal Component Analysis (KPCA) is a technique used in machine 
learning for nonlinear dimensionality reduction. It is an extension of the classical 
Principal Component Analysis (PCA) algorithm, which is a linear method that identifies 
the most significant features or components of a dataset. KPCA applies a nonlinear 
mapping function to the data before applying PCA, allowing it to capture more complex 
and nonlinear relationships between the data points. 

In KPCA, a kernel function is used to map the input data to a high-dimensional feature 
space, where the nonlinear relationships between the data points can be more easily 
captured by linear methods such as PCA. The principal components of the transformed 
data are then computed, which can be used for tasks such as data visualization, 
clustering, or classification. 

One of the advantages of KPCA over traditional PCA is that it can handle nonlinear 
relationships between the input features, which can be useful for tasks such as image or 
speech recognition. KPCA can also handle high-dimensional datasets with many 
features by reducing the dimensionality of the data while preserving the most important 
information. 

However, KPCA has some limitations, such as the need to choose an appropriate kernel 
function and its corresponding parameters, which can be difficult and time-consuming. 
KPCA can also be computationally expensive for large datasets, as it requires the 
computation of the kernel matrix for all pairs of data points. 

 

 

Matrix factorization 

Matrix factorization is a powerful technique in machine learning and data analysis, especially in collaborative 
filtering and recommendation systems. Here’s an overview of the concept, its applications, and methods. 

What is Matrix Factorization? 

Matrix factorization involves decomposing a large matrix into the product of two or more smaller matrices. This 

decomposition helps to uncover latent factors that explain the observed interactions in the data. 

Key Concepts: 

 Latent Features: Hidden variables that capture underlying patterns. 
 User-Item Matrix: Often used in recommendation systems where rows represent users, columns represent 

items (e.g., movies, products), and entries represent interactions (e.g., ratings). 

Applications 

1. Recommendation Systems: 
o Predicting user preferences based on past behavior (e.g., predicting movie ratings). 

2. Collaborative Filtering: 
o Finding similarities between users or items to make recommendations based on others' behaviors. 

3. Dimensionality Reduction: 
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o Reducing the complexity of data while preserving its structure, useful for visualization. 

Common Matrix Factorization Techniques 

1. Singular Value Decomposition (SVD): 
o Decomposes a matrix into three matrices: UUU, ΣΣΣ, and VTV^TVT. It is widely used in recommendation 

systems (e.g., Netflix). 

R≈U⋅Σ⋅VTR \approx U \cdot Σ \cdot V^TR≈U⋅Σ⋅VT 

2. Non-Negative Matrix Factorization (NMF): 
o Decomposes the matrix into non-negative factors, useful for interpretability. 

R≈W⋅HR \approx W \cdot HR≈W⋅H 

3. Alternating Least Squares (ALS): 
o An optimization technique often used in collaborative filtering. It alternates between fixing user factors 

and item factors, minimizing the reconstruction error. 

4. Probabilistic Matrix Factorization: 
o Uses a probabilistic approach to model the underlying factors, often using Bayesian methods. 

Basic Steps in Matrix Factorization for Recommendation Systems 

1. Data Preparation: 
o Create a user-item matrix from the data (e.g., ratings). 

2. Matrix Factorization: 
o Choose a factorization technique (like SVD) to decompose the matrix. 

3. Model Training: 
o Train the model on the user-item interactions, optimizing for prediction accuracy. 

4. Prediction: 
o Use the learned factors to predict unknown ratings or recommend items to users. 

5. Evaluation: 
o Evaluate the model using metrics like RMSE, precision, recall, or AUC on a test dataset. 

Conclusion 

Matrix factorization is a cornerstone technique in machine learning, particularly for building effective 

recommendation systems. Its ability to extract latent factors from user-item interactions makes it invaluable for 

understanding complex relationships in data. 

4o mini 

You said: 

matrix completion in machine learning 

ChatGPT said: 

ChatGPT 

Matrix completion is a technique in machine learning that aims to fill in missing entries in a matrix, particularly 

when the matrix is partially observed. This method is widely used in various applications, especially in 

recommendation systems, image processing, and collaborative filtering. 
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What is Matrix Completion? 

Matrix completion focuses on reconstructing a matrix from a subset of its entries. The fundamental idea is that 

even if a matrix has missing values, it can still be approximated using the available data based on certain 

underlying patterns. 

Key Concepts 

1. Low-Rank Matrix Assumption: 
o It is often assumed that the matrix can be well-approximated by a low-rank matrix. This means that the 

data can be represented with a smaller number of latent features than the dimensions of the original 
matrix. 

2. Missing Data: 
o In many real-world scenarios (like user ratings), matrices are sparsely populated, with many missing 

entries. 

Applications 

1. Recommendation Systems: 
o Predicting user preferences in scenarios like movie ratings or product recommendations. 

2. Collaborative Filtering: 
o Estimating missing user-item interactions based on observed data. 

3. Image Inpainting: 
o Filling in missing parts of images or reconstructing images from incomplete data. 

4. Sensor Networks: 
o Estimating missing sensor readings in distributed sensor networks. 

Common Techniques for Matrix Completion 

1. Singular Value Thresholding (SVT): 
o A popular algorithm that iteratively minimizes the nuclear norm (the sum of singular values) while 

respecting observed entries. 

2. Alternating Least Squares (ALS): 
o This method alternates between optimizing user and item latent factors, effectively filling in missing 

values. 

3. Low-Rank Matrix Factorization: 
o Factorizing the matrix into two lower-dimensional matrices (similar to SVD), ensuring that the 

completed matrix has low rank. 

4. Convex Optimization: 
o Formulating the problem as a convex optimization problem to minimize a loss function that penalizes 

discrepancies between observed and predicted entries. 

5. Deep Learning Approaches: 
o Using neural networks to learn representations of the data and predict missing entries, such as using 

autoencoders or generative models. 

Basic Steps in Matrix Completion 

1. Data Preparation: 
o Create a user-item matrix, noting which entries are observed and which are missing. 

2. Model Selection: 
o Choose an appropriate matrix completion method based on the problem and data characteristics. 

3. Training the Model: 
o Train the model using the observed entries, optimizing for the best reconstruction of the matrix. 
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4. Prediction: 
o Use the trained model to fill in the missing values in the matrix. 

5. Evaluation: 
o Assess the model's performance using metrics such as RMSE (Root Mean Square Error) on a validation 

set. 

Conclusion 

Matrix completion is a vital technique for handling missing data, particularly in scenarios like recommendation 

systems and collaborative filtering. By leveraging the structure and patterns in the data, matrix completion 

methods can provide accurate estimates of missing values, leading to improved model performance and better 

insights. 

 

 

Generative Models 

What are Generative Models? 

Generative models are a class of models that aim to learn the joint probability distribution P(X,Y)P(X, 

Y)P(X,Y) of the data, where XXX represents the input features and YYY represents the output labels. These 

models can generate new samples from the learned distribution. 

Characteristics: 

 Data Generation: Can create new instances similar to the training data. 
 Probabilistic Interpretation: They learn the underlying distribution of the data. 
 Examples: Gaussian Mixture Models (GMM), Variational Autoencoders (VAEs), Generative Adversarial Networks 

(GANs). 

Applications: 

 Image and text generation 
 Anomaly detection 
 Semi-supervised learning 

 

Mixture Models 

What are Mixture Models? 

Mixture models represent a probability distribution as a combination (or mixture) of multiple component 

distributions. Each component can represent a different cluster or pattern within the data. 

Gaussian Mixture Models (GMM): 

 A common type of mixture model that assumes the data is generated from a mixture of several Gaussian 
distributions. 
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 Components: 
o Each Gaussian component is characterized by a mean and a covariance matrix. 
o The model is defined by a set of parameters, including weights for each Gaussian. 

EM Algorithm: 

 The Expectation-Maximization (EM) algorithm is commonly used to estimate the parameters of mixture models. 
o E-Step: Estimate the probability that each data point belongs to each mixture component. 
o M-Step: Update the parameters based on these probabilities. 

Applications: 

 Clustering (e.g., in customer segmentation) 
 Density estimation 
 Image segmentation 

Latent Factor Models 

What are Latent Factor Models? 

Latent factor models are used to uncover hidden (latent) variables that explain observed data. These models are 

particularly popular in collaborative filtering and recommendation systems. 

Characteristics: 

 Latent Variables: They assume that observed variables are generated from a smaller set of unobserved latent 
factors. 

 Matrix Factorization: Often employs techniques like Singular Value Decomposition (SVD) or Alternating Least 
Squares (ALS) to find these latent factors. 

Applications: 

 Recommendation systems (e.g., predicting user preferences) 
 Collaborative filtering (e.g., movie ratings) 
 Dimensionality reduction in high-dimensional datasets 

 

Conclusion 

Generative models, mixture models, and latent factor models each serve unique purposes in machine learning: 

 Generative Models learn to generate data by modeling the underlying distribution. 
 Mixture Models use combinations of distributions to represent complex data patterns. 
 Latent Factor Models help in uncovering hidden factors that drive observed behaviors, particularly in 

collaborative filtering and recommendation systems. 

Understanding these concepts allows for effective application in various machine learning tasks, from clustering 

to recommendation and data generation. 

4o mini 
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