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                                                        UNIT-I 

Machine Learning (ML) is a subset of artificial intelligence (AI) that enables systems to learn from data, 

identify patterns, and make decisions with minimal human intervention. In simple terms, machine learning 

allows computers to automatically improve their performance over time through experience. 

1. Types of Machine Learning 

Machine learning is broadly categorized into three types: 

a. Supervised Learning 

 Definition: In supervised learning, the algorithm is trained on a labeled dataset, meaning that each input 
comes with the correct output (target). The model learns from the training data and tries to make 
predictions on new, unseen data. 

 Goal: The goal is to learn a mapping from inputs to outputs based on examples. 
 Common Algorithms: 

o Linear Regression 
o Decision Trees 
o Support Vector Machines (SVM) 
o Neural Networks 

 Examples: 
o Predicting house prices based on features like size, location, etc. 
o Classifying emails as spam or not spam. 

b. Unsupervised Learning 

 Definition: In unsupervised learning, the algorithm is given data without explicit labels or outputs. The goal 
is to find hidden structures or patterns within the data. 

 Goal: To discover the underlying structure of data or group similar data points together. 
 Common Algorithms: 

o Clustering (e.g., K-Means, Hierarchical Clustering) 
o Principal Component Analysis (PCA) 
o Association Rules (e.g., Apriori) 

 Examples: 
o Customer segmentation in marketing (grouping customers based on purchasing behavior). 
o Reducing the dimensionality of a dataset while preserving key information. 

c. Reinforcement Learning 

 Definition: In reinforcement learning, the model learns through trial and error by interacting with an 
environment. It receives feedback in the form of rewards or penalties and adjusts its actions to maximize 
the total reward. 

 

2. Key Concepts in Machine Learning 

a. Model 

A model in machine learning is a mathematical representation that the algorithm uses to make predictions 

or decisions. It is the output of the learning process and is constructed by training the model on the dataset. 
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 Example: A linear regression model might predict house prices based on features like area and number of 
bedrooms. 

b. Training 

Training refers to the process of feeding data into the machine learning algorithm so it can learn the 

relationship between the inputs (features) and outputs (labels). The algorithm uses this data to adjust its 

parameters to minimize prediction errors. 

c. Dataset 

A dataset is a collection of data used to train and evaluate a machine learning model. A typical dataset 

consists of: 

 Features (Input Variables): These are the attributes or independent variables used to predict the target. 
 Labels (Target Variables): These are the outputs or dependent variables that the model is trying to predict 

(used only in supervised learning). 

Example: 

Area Bedrooms Price (Label) 

1200 3 $300,000 

1500 4 $350,000 

d. Overfitting and Underfitting 

 Overfitting: Occurs when a model is too complex and learns the noise in the training data, leading to poor 
performance on unseen data. The model "memorizes" rather than generalizes. 

 Underfitting: Occurs when a model is too simple and fails to capture the underlying patterns in the data, 
resulting in poor performance on both the training and test data. 

e. Bias-Variance Tradeoff 

 Bias: Refers to the error introduced by simplifying assumptions made by the model. High bias can lead to 
underfitting. 

 Variance: Refers to the model's sensitivity to small fluctuations in the training data. High variance can lead 
to overfitting. 

The bias-variance tradeoff is a key concept in machine learning that describes the balance between these 

two sources of error. 

f. Generalization 

The ability of a machine learning model to perform well on unseen or new data is called generalization. A 

model that generalizes well captures the true patterns in the data rather than noise. 

 

3. Steps in the Machine Learning Process 
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a. Data Collection 

The first step in machine learning is gathering relevant data. This data can come from various sources like 

sensors, databases, or user interactions. The quality and quantity of data are crucial for training a good 

model. 

b. Data Preprocessing 

Raw data is often noisy, incomplete, or unstructured. Preprocessing steps include: 

 Cleaning: Removing missing or erroneous data. 
 Normalization/Standardization: Scaling data to a standard range (e.g., 0-1). 
 Encoding: Converting categorical data into numerical form (e.g., one-hot encoding). 
 Splitting: Dividing the dataset into training, validation, and test sets. 

c. Feature Engineering 

Feature engineering involves selecting and transforming raw data into meaningful inputs for the model. 

This may include: 

 Feature Selection: Identifying the most relevant features for the task. 
 Feature Transformation: Creating new features based on existing ones (e.g., adding polynomial terms). 

d. Model Selection 

Choosing the right algorithm or model is key. Different algorithms work better for different types of 

problems (e.g., linear regression for predicting continuous values, decision trees for classification). 

e. Training the Model 

The selected model is trained on the training data. During this process, the model learns to map input 

features to the correct output labels by minimizing a loss function. 

f. Model Evaluation 

After training, the model is evaluated on a separate test dataset to measure its performance. Common 

evaluation metrics include: 

 Accuracy: Proportion of correct predictions (for classification). 
 Mean Squared Error (MSE): Average squared difference between predicted and actual values (for 

regression). 
 Precision, Recall, F1-Score: Metrics for classification tasks, particularly in imbalanced datasets. 

g. Model Tuning 

Once the model is trained, hyperparameter tuning may be done to improve performance. Techniques like 

grid search or random search can be used to find the best hyperparameters for the model. 
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4. Common Machine Learning Algorithms 

a. Regression Algorithms (for continuous output): 

 Linear Regression: Predicts a continuous value based on a linear relationship between input and output. 
 Ridge and Lasso Regression: Variants of linear regression that use regularization to prevent overfitting. 

b. Classification Algorithms (for categorical output): 

 Logistic Regression: Predicts a binary outcome (e.g., yes/no) based on input features. 
 Decision Trees: Splits data into branches based on feature values, making decisions at each node. 
 Random Forest: An ensemble of decision trees that improves prediction accuracy and reduces overfitting. 
 Support Vector Machines (SVM): Finds the hyperplane that best separates classes in feature space. 
 K-Nearest Neighbors (KNN): Classifies a data point based on the majority class among its k nearest 

neighbors. 

c. Clustering Algorithms (for unsupervised learning): 

 K-Means: Divides data into k clusters based on similarity. 
 Hierarchical Clustering: Builds a hierarchy of clusters using either an agglomerative or divisive approach. 

d. Dimensionality Reduction: 

 Principal Component Analysis (PCA): Reduces the dimensionality of the data while preserving as much 
variance as possible. 

 t-SNE (t-Distributed Stochastic Neighbor Embedding): A non-linear dimensionality reduction technique 
often used for visualizing high-dimensional data. 

 

5. Key Applications of Machine Learning 

 Healthcare: Predicting diseases, personalized treatment plans. 
 Finance: Fraud detection, stock price prediction. 
 Marketing: Customer segmentation, recommendation systems. 
 Self-Driving Cars: Real-time decision-making based on sensor data. 
 Natural Language Processing (NLP): Sentiment analysis, language translation, chatbots. 

 

Summary: 

 Machine Learning allows computers to learn from data and make predictions or decisions. 
 Supervised, Unsupervised, and Reinforcement Learning are the main types of ML. 
 Key concepts include features, labels, training, overfitting, and generalization. 
 ML involves steps like data collection, preprocessing, model selection, training, and evaluation. 
 Common algorithms include linear regression, decision trees, SVM, K-Means, and PCA. 

 

Supervised learning 
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Supervised learning is a type of machine learning where an algorithm is trained on labeled data. In this 

approach, the input data is paired with the correct output, allowing the model to learn the relationship 

between inputs and outputs. Once trained, the model can predict the output for new, unseen data based on 

what it has learned. 

. 

Common Algorithms in Supervised Learning: 

 Linear Regression: Predicts a continuous output (e.g., predicting house prices). 

 Logistic Regression: Used for binary classification problems (e.g., email spam detection). 

 Decision Trees: A flowchart-like model for making decisions based on features. 

 Support Vector Machines (SVM): Finds a hyperplane to separate different classes of data. 

 K-Nearest Neighbors (KNN): Classifies data based on the majority class of its nearest neighbors. 

 Neural Networks: Complex models inspired by the human brain, useful for tasks like image and 

speech recognition. 

Example Workflow in Supervised Learning: 

1. Data Collection: Gather labeled data. 

2. Data Preprocessing: Clean and prepare the data for training (e.g., handling missing values, 

normalizing features). 

3. Model Selection: Choose a suitable supervised learning algorithm. 

4. Training: Feed the model with training data and tune its parameters. 

5. Evaluation: Test the model on unseen data to assess its accuracy. 

6. Deployment: Once a satisfactory performance is achieved, the model is deployed to make 

predictions on real-world data. 

Applications of Supervised Learning: 

 Spam Detection: Classifying emails as spam or not spam. 

 Image Classification: Labeling objects in images (e.g., identifying animals in photos). 

 Sentiment Analysis: Predicting the sentiment of text (e.g., classifying movie reviews as positive or 

negative). 

 Medical Diagnosis: Predicting the likelihood of a disease based on patient data. 

Supervised learning is widely used in various domains due to its ability to learn from examples and 

generalize to unseen data. 

Distance-based methods in supervised machine learning are algorithms that use the distance between data 

points to make predictions. These methods rely on the assumption that points that are closer in feature 

space are more likely to share the same label (for classification) or have similar values (for regression). 

Here are the main distance-based methods specifically in supervised learning: 

 

1. K-Nearest Neighbors (KNN) 

 Type: Classification and Regression 

 Concept: KNN is one of the simplest distance-based supervised learning algorithms. It assigns a 

label or value to a new data point based on the majority label (for classification)  
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What is the K-Nearest Neighbors Algorithm? 
KNN is one of the most basic yet essential classification algorithms in machine 
learning. It belongs to the supervised learning domain and finds intense application 
in pattern recognition, data mining, and intrusion detection. 
 
We are given some prior data (also called training data), which classifies coordinates 
into groups identified by an attribute. 
As an example, consider the following table of data points containing two features: 

 

KNN Algorithm working visualization 

Now, given another set of data points (also called testing data), allocate these points 
to a group by analyzing the training set.  
 

Why do we need a KNN algorithm? 
(K-NN) algorithm is a versatile and widely used machine learning algorithm that is 
primarily used for its simplicity and ease of implementation.  
It does not require any assumptions about the underlying data distribution. It can also 
handle both numerical and categorical data, making it a flexible choice for various 
types of datasets in classification and regression tasks. It is a non-parametric method 
that makes predictions based on the similarity of data points in a given dataset. K-NN 
is less sensitive to outliers compared to other algorithms. 
 
The K-NN algorithm works by finding the K nearest neighbors to a given data point 
based on a distance metric, such as Euclidean distance. The class or value of the 
data point is then determined by the majority vote or average of the K neighbors. 
This approach allows the algorithm to adapt to different patterns and make 
predictions based on the local structure of the data. 
Distance Metrics Used in KNN Algorithm 
As we know that the KNN algorithm helps us identify the nearest points or the groups 
for a query point. But to determine the closest groups or the nearest points for a 
query point we need some metric. For this purpose, we use below distance metrics: 

 
 
 
Euclidean Distance 
This is nothing but the cartesian distance between the two points which are in the 
plane/ hyperplane. Euclidean distance can also be visualized as the length of the 

https://www.geeksforgeeks.org/supervised-unsupervised-learning
https://www.geeksforgeeks.org/data-mining
https://www.geeksforgeeks.org/calculate-the-euclidean-distance-using-numpy


7 
 

straight line that joins the two points which are into consideration. This metric helps 
us calculate the net displacement done between the two states of an object. 

 
 

Manhattan Distance 
Manhattan Distance metric is generally used when we are interested in the total 
distance traveled by the object instead of the displacement. This metric is calculated 
by summing the absolute difference between the coordinates of the points in n-
dimensions. 

 
 
Minkowski Distance 
We can say that the Euclidean, as well as the Manhattan distance, are special cases 
of the Minkowski distance. 
 

 
From the formula above we can say that when p = 2 then it is the same as the 
formula for the Euclidean distance and when p = 1 then we obtain the formula for the 
Manhattan distance. 
. 
How to choose the value of k for KNN Algorithm? 
The value of k is very crucial in the KNN algorithm to define the number of neighbors 
in the algorithm. The value of k in the k-nearest neighbors (k-NN) algorithm should 
be chosen based on the input data. If the input data has more outliers or noise, a 
higher value of k would be better. It is recommended to choose an odd value for k to 
avoid ties in classification.  
  
Workings of KNN algorithm 
Thе K-Nearest Neighbors (KNN) algorithm operates on the principle of similarity, 
where it predicts the label or value of a new data point by considering the labels or 
values of its K nearest neighbors in the training dataset. 

 

https://www.geeksforgeeks.org/how-to-calculate-manhattan-distance-in-r
https://www.geeksforgeeks.org/minkowski-distance-python
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Step-by-Step explanation of how KNN works is discussed below: 

Step 1: Selecting the optimal value of K 
 K represents the number of nearest neighbors that needs to be considered while 

making prediction. 

Step 2: Calculating distance 
 To measure the similarity between target and training data points, Euclidean 

distance is used. Distance is calculated between each of the data points in the 
dataset and target point. 

Step 3: Finding Nearest Neighbors 
 The k data points with the smallest distances to the target point are the nearest 

neighbors. 

Step 4: Voting for Classification or Taking Average for Regression 
 In the classification problem, the class labels of K-nearest neighbors are 

determined by performing majority voting. The class with the most occurrences 
among the neighbors becomes the predicted class for the target data point. 

 In the regression problem, the class label is calculated by taking average of the 
target values of K nearest neighbors. The calculated average value becomes the 
predicted output for the target data point. 

 

Advantages of the KNN Algorithm 
 Easy to implement as the complexity of the algorithm is not that high. 
 Adapts Easily – As per the working of the KNN algorithm it stores all the data in 

memory storage and hence whenever a new example or data point is added then 
the algorithm adjusts itself as per that new example and has its contribution to the 
future predictions as well. 

 Few Hyperparameters – The only parameters which are required in the training 
of a KNN algorithm are the value of k and the choice of the distance metric which 
we would like to choose from our evaluation metric. 

Disadvantages of the KNN Algorithm 
 Does not scale – As we have heard about this that the KNN algorithm is also 

considered a Lazy Algorithm. The main significance of this term is that this takes 
lots of computing power as well as data storage. This makes this algorithm both 
time-consuming and resource exhausting. 

 Curse of Dimensionality – There is a term known as the peaking phenomenon 
according to this the KNN algorithm is affected by the curse of 
dimensionality which implies the algorithm faces a hard time classifying the data 
points properly when the dimensionality is too high. 

 Prone to Overfitting – As the algorithm is affected due to the curse of 
dimensionality it is prone to the problem of overfitting as well. Hence 
generally feature selection as well as dimensionality reduction techniques are 
applied to deal with this problem. 

 Pros: 

 Simple and easy to implement. 

 Non-parametric: No need to make assumptions about the data distribution. 

Cons: 

https://www.geeksforgeeks.org/videos/curse-of-dimensionality-in-machine-learning
https://www.geeksforgeeks.org/videos/curse-of-dimensionality-in-machine-learning
https://www.geeksforgeeks.org/feature-selection-techniques-in-machine-learning
https://www.geeksforgeeks.org/dimensionality-reduction
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 Computationally expensive, especially for large datasets. 

 Sensitive to irrelevant features and the curse of dimensionality. 

Applications: 

 Image recognition, recommendation systems, and text classification. 

 

2. Distance-Weighted KNN 

 Type: Classification and Regression 

 Concept: A variation of KNN where neighbors closer to the test point are given more weight in 

determining the output. 

 How it works: 

o Similar to KNN, but instead of simply taking a majority vote (for classification) or 

averaging (for regression), each neighbor’s contribution is weighted by its distance. 

o The closer the neighbor, the greater its influence on the prediction. 

o Common weighting functions include inverse distance (1/d) or Gaussian decay. 

Pros: 

 Gives more importance to closer neighbors, improving predictions in some cases. 

 Helps mitigate cases where outliers are in close proximity to the decision boundary. 

Cons: 

 Computational complexity similar to KNN. 

 Requires a good choice of weighting function. 

Applications: 

 Similar to KNN, but especially useful where the importance of proximity is critical (e.g., medical 

diagnosis). 

 

3. Support Vector Machines (SVM) 

 Type: Classification (can also be extended to regression via Support Vector Regression) 

 Concept: SVM is a supervised learning algorithm that finds the hyperplane that best separates data 

points from different classes. In its kernelized form, SVM can be considered distance-based, as it 

computes distances between data points using kernel functions. 

 How it works: 

o SVM identifies the support vectors, which are the data points closest to the decision 

boundary (hyperplane). 

o The goal is to maximize the distance (margin) between the support vectors and the 

hyperplane. 

o If the data is not linearly separable, SVM uses a kernel function (e.g., radial basis function 

(RBF), polynomial) to map the data into a higher-dimensional space, where it computes 

distances to create a more flexible decision boundary. 

Distance metrics: 
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 SVM with linear kernel uses the Euclidean distance to define the hyperplane. 

 SVM with the RBF kernel computes distance in a transformed feature space. 

Pros: 

 Effective in high-dimensional spaces. 

 Works well when there's a clear margin of separation between classes. 

Cons: 

 Sensitive to outliers. 

 Choosing the right kernel function and hyperparameters can be complex. 

Applications: 

 Text categorization, image classification, and bioinformatics. 

 

4. Learning Vector Quantization (LVQ) 

 Type: Classification 

 Concept: LVQ is a prototype-based distance-learning algorithm that assigns a class label based on 

the closest "prototype" or reference vector for each class. 

 How it works: 

o During training, the algorithm learns a set of prototype vectors for each class. 

o When making predictions, the algorithm finds the nearest prototype to the input data and 

assigns the class label of that prototype. 

o The prototypes are adjusted during training using a distance metric (usually Euclidean 

distance). 

Pros: 

 Simple and interpretable, as it reduces the dataset to a smaller set of representative prototypes. 

 Effective for classification tasks where the decision boundaries are non-linear. 

Cons: 

 Sensitive to the initial choice of prototypes. 

 Not as widely used as other distance-based methods. 

Applications: 

 Pattern recognition, speech recognition, and image classification. 

 

5. Radius-Based Nearest Neighbors (RNN) 

 Type: Classification and Regression 

 Concept: Instead of selecting a fixed number of neighbors KKK like in KNN, RNN selects all 

points within a fixed radius rrr of the query point. 

 How it works: 
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o All points within the specified radius are considered as neighbors. 

o For classification, a majority vote determines the class. 

o For regression, the average value of the neighbors is used as the prediction. 

Pros: 

 More flexible than KNN when the data is unevenly distributed, as it adapts based on density. 

 Avoids the problem of selecting an arbitrary number of neighbors KKK. 

Cons: 

 Choosing an appropriate radius rrr can be challenging, and results are sensitive to this parameter. 

 Can have no neighbors or too many neighbors, depending on the radius. 

Applications: 

 Similar to KNN but useful when data density is variable across regions. 

 

6. Mahalanobis Distance-Based Classification 

 Type: Classification 

 Concept: This method computes the Mahalanobis distance between points and uses it for 

classification, especially when features are correlated. 

 How it works: 

o Mahalanobis distance takes into account the covariance of the data and is a multivariate 

generalization of Euclidean distance. 

o It measures the distance between a point and the mean of a distribution. 

o It is particularly useful when the data has different scales or when features are correlated. 

Pros: 

 Handles correlated and multi-dimensional data well. 

 More accurate in cases where the assumption of independence between features is violated. 

Cons: 

 Requires computing the covariance matrix, which can be computationally expensive for large 

datasets. 

 Sensitive to outliers, which can skew the covariance matrix. 

Applications: 

 Outlier detection, anomaly detection, and classification in multi-dimensional datasets (e.g., finance, 

biology). 

Summary: 

Distance-based methods in supervised learning are intuitive and rely on the idea that similar data points 

tend to have similar outputs. The performance of these algorithms is highly dependent on the choice of the 

distance metric, feature scaling, and the presence of irrelevant features. Common distance-based methods 
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include K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Distance-Weighted KNN, 

Learning Vector Quantization (LVQ), and Mahalanobis Distance-based Classification. 

They are widely used in real-world applications such as recommendation systems, image and text 

classification, medical diagnosis, and anomaly detection. 

 

5. Applications of Nearest Neighbors Algorithms: 

1. Image Recognition: 

 Nearest neighbors are commonly used in image recognition tasks, such as the classification of 

handwritten digits (e.g., MNIST dataset). The feature space might consist of pixel intensities, and 

images that are similar (closer) in this space are likely to share the same label. 

2. Recommendation Systems: 

 In collaborative filtering, KNN can be used to find users similar to a given user and recommend 

items based on the preferences of those users. 

3. Anomaly Detection: 

 Nearest neighbors can help detect outliers by flagging points that have no close neighbors, which 

could indicate they are anomalies in the dataset. 

4. Medical Diagnosis: 

 In medical applications, KNN can classify patients based on symptoms or test results, with the 

assumption that similar patients are likely to have the same diagnosis. 

 

Choosing the Right Value of KKK: 

 Small KKK: Leads to a more complex decision boundary (high variance, low bias) and is more 

sensitive to noise. 

 Large KKK: Results in a smoother decision boundary (low variance, high bias) and is less 

sensitive to noise. 

 Best practice: Use cross-validation to find the optimal value of KKK for your specific dataset. 

 

Strengths of Nearest Neighbor Algorithms: 

1. Intuitive and easy to understand: Simple algorithm with no complex training phase. 

2. Versatility: Can be applied to both classification and regression problems. 

3. Non-parametric: Makes no assumptions about the underlying distribution of the data. 

 

Weaknesses of Nearest Neighbor Algorithms: 
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1. Computational complexity: Especially for large datasets, computing the distance between the test 

point and all training points can be slow. 

2. Sensitive to irrelevant features: The inclusion of irrelevant or redundant features can skew the 

distance calculations, leading to poor predictions. 

3. Curse of dimensionality: As the number of features increases, the distances between points 

become less meaningful, reducing the effectiveness of the algorithm. 

 

Techniques to Improve Nearest Neighbors: 

1. Feature scaling: Normalizing or standardizing features ensures that no single feature dominates the 

distance calculation. 

2. Dimensionality reduction: Techniques like Principal Component Analysis (PCA) or t-SNE can 

reduce the number of dimensions, mitigating the curse of dimensionality. 

3. Approximate Nearest Neighbors (ANN): Instead of computing exact nearest neighbors, 

algorithms like KD-trees or Ball Trees can approximate the nearest neighbors to reduce 

computation time. 

 

Conclusion: 

Nearest neighbors methods, particularly KNN, are straightforward and effective for many supervised 

learning tasks. They make predictions based on the similarity (distance) between data points, making them 

particularly useful for classification and regression when the decision boundary is complex or when there is 

no clear mathematical model for the data. Despite their simplicity, nearest neighbor methods face 

challenges like computational cost and sensitivity to high-dimensional data, but these can be mitigated 

through techniques like feature scaling 

 

 

Decision Tree in Machine Learning 

A decision tree is a type of supervised learning algorithm that is commonly used in 
machine learning to model and predict outcomes based on input data.  
It is a tree-like structure where each internal node tests on attribute,  
each branch corresponds to attribute value and each leaf node represents the 
final decision or prediction.  
The decision tree algorithm falls under the category of supervised learning.  
 
They can be used to solve both regression and classification problems. 

Decision Tree Terminologies 
 
There are specialized terms associated with decision trees that denote various 
components and facets of the tree structure and decision-making procedure. : 
 Root Node: A decision tree‟s root node, which represents the original choice or 

feature from which the tree branches, is the highest node. 
 Internal Nodes (Decision Nodes): Nodes in the tree whose choices are 

determined by the values of particular attributes. There are branches on these 
nodes that go to other nodes. 

https://www.geeksforgeeks.org/decision-tree/
https://www.geeksforgeeks.org/supervised-unsupervised-learning/
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 Leaf Nodes (Terminal Nodes): The branches‟ termini, when choices or forecasts 
are decided upon. There are no more branches on leaf nodes. 

 Branches (Edges): Links between nodes that show how decisions are made in 
response to particular circumstances. 

 Splitting: The process of dividing a node into two or more sub-nodes based on a 
decision criterion. It involves selecting a feature and a threshold to create subsets 
of data. 

 Parent Node: A node that is split into child nodes. The original node from which a 
split originates. 

 Child Node: Nodes created as a result of a split from a parent node. 
 Decision Criterion: The rule or condition used to determine how the data should 

be split at a decision node. It involves comparing feature values against a 
threshold. 

 Pruning: The process of removing branches or nodes from a decision tree to 
improve its generalisation and prevent overfitting. 

Understanding these terminologies is crucial for interpreting and working with 
decision trees in machine learning applications. 

How Decision Tree is formed? 
The process of forming a decision tree involves recursively partitioning the data 
based on the values of different attributes. The algorithm selects the best attribute to 
split the data at each internal node, based on certain criteria such as information gain 
or Gini impurity. This splitting process continues until a stopping criterion is met, such 
as reaching a maximum depth or having a minimum number of instances in a leaf 
node. 
 

Why Decision Tree? 
Decision trees are widely used in machine learning for a number of reasons: 
 Decision trees are so versatile in simulating intricate decision-making processes, 

because of their interpretability and versatility. 
 They provide comprehensible insights into the decision logic, decision trees are 

especially helpful for tasks involving categorisation and regression. 
 They are proficient with both numerical and categorical data, and they can easily 

adapt to a variety of datasets thanks to their autonomous feature selection 
capability. 

 Decision trees also provide simple visualization, which helps to comprehend and 
elucidate the underlying decision processes in a model. 

Decision Tree Approach 
Decision tree uses the tree representation to solve the problem in which each leaf 
node corresponds to a class label and attributes are represented on the internal node 
of the tree. We can represent any boolean function on discrete attributes using the 
decision tree. 
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Types of Decision Trees 

 Classification Trees: Used when the target variable is categorical. The leaves of the tree represent 

class labels, and the internal nodes represent decisions based on features. 

 Regression Trees: Used when the target variable is continuous. The leaves of the tree represent the 

predicted values (e.g., prices, temperatures), and internal nodes make decisions based on splitting 

continuous features. 

Pruning the Tree 

Pruning is a technique used to reduce the size of the tree and prevent overfitting: 

 Pre-pruning (Early Stopping): Stop splitting a node before it becomes a leaf node if the split does 

not result in a significant improvement (e.g., if a minimum number of samples per node is not met). 

 Post-pruning: After the tree has been fully grown, remove nodes that add little value to the 

prediction. This can be done by collapsing nodes whose removal reduces prediction error (measured 

via cross-validation). 

Advantages and Disadvantages of Decision Trees 

Advantages: 

1. Simple to understand and interpret: Decision trees mimic human decision-making and are easy 

to visualize. 

2. Non-parametric: They do not require assumptions about the data distribution. 

3. Can handle both categorical and numerical features: Decision trees are flexible and can work 

with a mix of feature types. 

4. Feature Importance: They can compute feature importance scores based on how much each 

feature reduces impurity in the tree. 

Disadvantages: 

1. Prone to overfitting: Decision trees can grow deep and fit to the noise in the data, especially if 

they are not pruned. 

2. Instability: Small changes in the data can result in drastically different trees. 

3. Greedy algorithm: The algorithm makes local decisions at each node without considering future 

splits, which might not always lead to the globally optimal tree. 



16 
 

4. Bias toward features with more levels: Features with many distinct values (such as continuous 

features) tend to be selected more often for splits. 

Popular Decision Tree Algorithms 

1. ID3 (Iterative Dichotomiser 3) 

 Used for classification. 
 It uses information gain as the criterion to select the feature that best separates the data at each step. 
 ID3 can only handle categorical features. 

2. CART (Classification and Regression Trees) 

 Can be used for both classification and regression tasks. 
 For classification, CART uses the Gini impurity as the splitting criterion. 
 For regression, CART uses the mean squared error (MSE) to choose the best splits. 
 CART produces binary trees (i.e., each node has exactly two child nodes). 

3. C4.5 

 An extension of ID3 that can handle both categorical and continuous features. 
 It uses gain ratio (a normalized version of information gain) to decide the best splits. 
 C4.5 can also handle missing values and allows post-pruning. 

4. CHAID (Chi-squared Automatic Interaction Detection) 

 Used for classification. 
 CHAID uses a Chi-squared test to find the feature that is most significantly associated with the target 

variable. 

 

 

 

 

Understanding Naive Bayes and Machine Learning  

Naive Bayes is a powerful and simple algorithm for supervised learning, especially for tasks like text 

classification. It assumes conditional independence among features, which simplifies the calculations but 

may not hold in all cases. Despite its limitations, Naive Bayes remains popular due to its scalability, speed, 

and effectiveness in specific types of problems like spam filtering, sentiment analysis, and medical 

diagnosis 

Machine learning falls into two categories: 

 Supervised learning  
 Unsupervised learning 
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Supervised learning falls into two categories: 

 Classification  
 Regression 

Naive Bayes algorithm falls under classification. 

Bayes‟ Theorem describes the probability of an event based on prior knowledge of the conditions 
that might be related to the event. 

 

This equation is derived from the formula of conditional probability given below: 

 

In fact, Bayes‟ Theorem is nothing but an alternate way of calculating the conditional probability 
of an event. When the reverse conditional probability is easier to calculate than the joint 
probability, Bayes‟ Theorem is used. 

You can use Bayes‟ theorem to build a learner ML model, from an existing set of attributes, that 
predicts the probability of the response variable belonging to some class, given a new set of 
attributes. 

Consider the previous equation again. Now, assume that event A is the response variable and 
event B is the input attribute. So according to the equation, 

 P(A) or Class Prior is the prior probability of the response variable 
 P(B) or Predictor Prior is the evidence or the probability of training data 
 P(A|B) or Posterior Probability is the conditional probability of the response variable being of a 

particular value given the input attributes 
 P(B|A) or Likelihood is basically the reverse of the posterior probability or the likelihood of training 

data 

Stepwise Bayes Theorem 

Let‟s come back to the problem at hand. Looks like you‟re very serious with your resolution this 
time given that you have been keeping track of the weather outside for the past two weeks: 

Step 1 – Collect raw data 

https://www.simplilearn.com/tutorials/machine-learning-tutorial/classification-in-machine-learning
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Next, you need to create a frequency table for each attribute of your dataset. 

Step 2 – Convert data to a frequency table(s) 

 

 

 

 

Then, for each frequency table, you will create a likelihood table. 

Step 3 – Calculate prior probability and evidence 
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Step 4 – Apply probabilities to Bayes’ Theorem equation 
Let‟s say you want to focus on the likelihood that you go for a run given that it‟s sunny outside. 

 

P(Yes|Sunny) = P(Sunny|Yes) * P(Yes) / P(Sunny) = 0.625 * 0.571 / 0.428 = 0.834 

The Naïve Bayes Algorithm 

Naïve Bayes assumes conditional independence over the training dataset. The classifier 
separates data into different classes according to the Bayes‟ Theorem. But assumes that the 
relationship between all input features in a class is independent. Hence, the model is 
called naïve. 
This helps in simplifying the calculations by dropping the denominator from the formula while 
assuming independence: 
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Let‟s understand this through our running resolution example: 

Say you want to predict if on the coming Wednesday, given the following weather conditions, 
should you go for a run or sleep in: 

Outlook: Rainy 

Humidity: Normal 

Wind: Weak 

Run: ? 
Likelihood of „Yes‟ on Wednesday: 

P(Outlook = Rainy|Yes) * P(Humidity = Normal|Yes) * P(Wind = Weak|Yes) * P(Yes) 

= 1/8 * 1/8 * 9/9 * 8/14 = 0.0089 
Likelihood of „No‟ on Wednesday: 

P(Outlook = Rainy|No) * P(Humidity = Normal|No) * P(Wind = Weak|No) * P(No) 

= 3/6 * 3/6 * 2/5 * 6/14 = 0.0428 
Now, to determine the probability of going for a run on Wednesday, you just need to divide 
P(Yes) with the sum of the likelihoods of Yes and No. 

P(Yes) = 0.0089 / (0.0089 + 0.0428) = 0.172 

Similarly, P(No) = 0.0428 / (0.0089 + 0.0428) = 0.827 

According to your model, it looks like there‟s an almost 83% probability that you‟re going to stay 
under the covers next Wednesday! 

This was just a fun example. Although Naïve Bayes IS used for weather predictions, for 
advanced machine learning problems, the complexity of the Bayesian classifier needs to be 
reduced for it to be practical. This is where the naïve in Naïve Bayes comes in. 

Industrial Applications of Naïve Bayes 

 Text Classification: Naïve Bayes algorithm is almost always used as a classifier and is an excellent 
choice for spam filtering of your emails or news categorization on your smartphone. 

 Recommendation Systems: Naïve Bayes is used with collaborative filtering to build recommendation 
systems for you. The „Because you watched ____‟ section on Netflix is exactly that. 

 Sentiment Analysis: Naïve Bayes is an effective algorithm for the identification of positive or 
negative sentiments of a target group (customers, audience, etc.). Think of feedback forms and 
IMDb reviews. 

 

 

 

 

Types of Naïve Bayes Classifiers  

Bernoulli Naïve Bayes 
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              Bernoulli Naive Bayes (for binary data) 

 This is a variant of Naive Bayes for binary features (features that can take on only two values, e.g., 0 or 1). 
 For each feature, the model estimates the probability of the feature being present (1) or absent (0) in each 

class. 
 Application: Used for tasks like document classification when features represent binary occurrences of 

words (i.e., whether a word appears or not in a document). 

 
Multinomial Naïve Bayes 

Multinomial Naive Bayes (for discrete, count-based data) 

 This variant is used for discrete data, typically when features represent counts or frequencies, such as word 
counts in a text document. 

 The likelihood P(X∣C) is calculated based on the frequency of features in each class. 
 Application: Commonly used for text classification problems, like spam detection, sentiment analysis, and 

document classification. 

 
Gaussian Naïve Bayes 
 Used when data is as per the Gaussian distribution 

 Predictors are continuous variables 

 Application: Often used when the data contains continuous features (e.g., predicting age, height, etc.). 
 (for continuous data 

Advantages of Naïve Bayes 

 Easy to work with when using binary or categorical input values. 

 Require a small number of training data for estimating the parameters necessary for classification. 

 Handles both continuous and discrete data. 

 Fast and reliable for making real-time predictions. 

 Simple and Fast: Naive Bayes is highly efficient, both in terms of computational complexity and memory 
usage. It’s easy to implement and fast to train and predict. 

 Scalable: It performs well on large datasets because the complexity is linear with respect to the number of 
features and instances. 

 Works Well with High-Dimensional Data: Naive Bayes can handle high-dimensional data (e.g., text data 
with thousands of words) quite well. 

 Robust to Irrelevant Features: The naive assumption of independence means that irrelevant features don’t 
impact the model significantly. 

 Performs Well with Small Datasets: Naive Bayes can perform well even with smaller datasets, unlike more 
complex models like deep learning. 

  

Limitations of Naïve Bayes 

 Assumes that all the features are independent, which is highly unlikely in practical scenarios. 

 Unsuitable for numerical data. 

 The number of features must be equal to the number of attributes in the data for the algorithm to make 
correct predictions. 

 Encounters „Zero Frequency‟ problem: If a categorical variable has a category in the test dataset that 
wasn‟t included in the training dataset, the model will assign it a 0 probability and will be unable to 
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make a prediction. This problem can be resolved using smoothing techniques which are out of the 
scope of this article. 

 Computationally expensive when used to classify a large number of items. 

 Assumption of Independence: The major limitation is the naive assumption that features are independent. 
In many real-world applications, features are often correlated, and this assumption may not hold, 
potentially leading to poor performance. 

 Zero Frequency Problem: If a category or feature value is not present in the training data for a given class, 
Naive Bayes will assign a probability of zero, which can be problematic. This can be handled by using 
techniques like Laplace smoothing (adding a small value to the counts). 

 Not Ideal for Complex Relationships: Naive Bayes is less effective in datasets where complex relationships 
between features exist because the algorithm doesn’t capture interactions between features. 

  

 

 

  Applications of Naive Bayes 

Naive Bayes is widely used in applications where the independence assumption is reasonable or where 

speed and simplicity are more important than model accuracy. Some of the most common applications 

include: 

1. Text Classification: 

 Spam filtering: Classifying emails as spam or not spam based on the occurrence of words. 
 Sentiment analysis: Determining whether a text expresses a positive or negative sentiment. 
 Document classification: Categorizing text documents (e.g., news articles) into predefined categories. 
 Topic modeling: Assigning topics to text based on the frequency of words in the document. 

2. Recommendation Systems: 

 Naive Bayes is used in collaborative filtering to recommend products, services, or content based on user 
preferences or behavior. 

3. Medical Diagnosis: 

 In medical applications, Naive Bayes can be used to predict diseases based on symptoms, where each 
symptom is treated as a feature. 

4. Real-Time Predictions: 

 Due to its simplicity and speed, Naive Bayes is well-suited for real-time prediction systems, such as 
predicting user preferences on websites or flagging fraudulent transactions in real-time. 

Face Recognition 
As a classifier, it is used to identify the faces or its other features, like nose, mouth, eyes, etc. 

Weather Prediction  
It can be used to predict if the weather will be good or bad. 
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Medical Diagnosis  
Doctors can diagnose patients by using the information that the classifier provides. Healthcare 

professionals can use Naive Bayes to indicate if a patient is at high risk for certain diseases and conditions, 

such as heart disease, cancer, and other ailments.  

News Classification  
With the help of a Naive Bayes classifier, Google News recognizes whether the news is political, world 

news, and so on.  

As the Naive Bayes Classifier has so many applications, it’s worth learning more about how it works. 

 

 

 

 Example of Naive Bayes Classification 

Let's assume we have a simple dataset where we're classifying whether an email is "Spam" or "Not Spam" 

based on words present in the email (binary features). 

 Training data: 
o Email 1: "Buy", "Discount", "Limited" → Spam 
o Email 2: "Meeting", "Tomorrow", "Agenda" → Not Spam 
o Email 3: "Buy", "Offer", "Limited" → Spam 

 Test email: "Buy", "Limited", "Agenda" 

Using Naive Bayes: 

 Calculate P(Spam)P(Spam)P(Spam) and P(NotSpam)P(Not Spam)P(NotSpam). 
 Estimate P(Buy∣Spam)P(Buy|Spam)P(Buy∣Spam), P(Limited∣Spam)P(Limited|Spam)P(Limited∣Spam), and 

P(Agenda∣Spam)P(Agenda|Spam)P(Agenda∣Spam), etc. 
 Compute the posterior probabilities and classify the email as "Spam" or "Not Spam" based on the higher 

posterior probability.  

 

 

Linear regression 

Supervised learning has two types: 
 Classification: It predicts the class of the dataset based on the independent input 

variable. Class is the categorical or discrete values. like the image of an animal is 
a cat or dog? 

 Regression: It predicts the continuous output variables based on the independent 
input variable. like the prediction of house prices based on different parameters 
like house age, distance from the main road, location, area, etc. 

Here, we will discuss one of the simplest types of regression i.e. Linear Regression. 
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What is Linear Regression? 
Linear regression is a type of supervised machine learning algorithm that computes 
the linear relationship between the dependent variable and one or more independent 
features by fitting a linear equation to observed data. 
When there is only one independent feature, it is known as Simple Linear 
Regression, and when there are more than one feature, it is known as Multiple Linear 
Regression. 
Similarly, when there is only one dependent variable, it is considered Univariate 
Linear Regression, while when there are more than one dependent variables, it is 
known as Multivariate Regression. 

 
Types of Linear Regression 
There are two main types of linear regression: 

Simple Linear Regression 
This is the simplest form of linear regression, and it involves only one independent 
variable and one dependent variable. The equation for simple linear regression is: 
Y=β0+β1X 

 
where: 
 Y is the dependent variable 
 X is the independent variable 
 β0 is the intercept 
 β1 is the slope 
Multiple Linear Regression 
This involves more than one independent variable and one dependent variable. The 
equation for multiple linear regression is: 
y=β0+β1X1+β2X2+………βnXny=β0+β1X1+β2X2+………βnXn 
where: 
 Y is the dependent variable 
 X1, X2, …, Xn are the independent variables 
 β0 is the intercept 
 β1, β2, …, βn are the slopes 
 

The goal of the algorithm is to find the best Fit Line equation that can predict the values based 

on the independent variables. 

 

What is the best Fit Line? 
Our primary objective while using linear regression is to locate the best-fit line, which 
implies that the error between the predicted and actual values should be kept to a 
minimum. There will be the least error in the best-fit line. 
The best Fit Line equation provides a straight line that represents the relationship 
between the dependent and independent variables. The slope of the line indicates 
how much the dependent variable changes for a unit change in the independent 
variable(s). 

https://www.geeksforgeeks.org/supervised-machine-learning/
https://www.geeksforgeeks.org/simple-linear-regression-using-r/
https://www.geeksforgeeks.org/simple-linear-regression-using-r/
https://www.geeksforgeeks.org/ml-multiple-linear-regression-using-python/
https://www.geeksforgeeks.org/ml-multiple-linear-regression-using-python/
https://www.geeksforgeeks.org/univariate-linear-regression-in-python/
https://www.geeksforgeeks.org/univariate-linear-regression-in-python/
https://www.geeksforgeeks.org/multivariate-regression/
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Linear Regression 

 
Here Y is called a dependent or target variable and X is called an independent 
variable also known as the predictor of Y. There are many types of functions or 
modules that can be used for regression. A linear function is the simplest type of 
function. Here, X may be a single feature or multiple features representing the 
problem. 
Linear regression performs the task to predict a dependent variable value (y) based 
on a given independent variable (x)). Hence, the name is Linear Regression. In the 
figure above, X (input) is the work experience and Y (output) is the salary of a 
person. The regression line is the best-fit line for our model.  
We utilize the cost function to compute the best values in order to get the best fit line 
since different values for weights or the coefficient of lines result in different 
regression lines. 
Hypothesis function in Linear Regression 
As we have assumed earlier that our independent feature is the experience i.e X and 
the respective salary Y is the dependent variable. Let‟s assume there is a linear 
relationship between X and Y then the salary can be predicted using: 
Y^=θ1+θ2X 
OR 
y^i=θ1+θ2xi 
Here, 
 yiϵY(i=1,2,⋯,n)      are labels to data (Supervised learning) 
 xiϵX(i=1,2,⋯,n)      are the input independent training data (univariate – one input 

variable(parameter))  
 yi^ϵY^(i=1,2,⋯,n)       are the predicted values. 
The model gets the best regression fit line by finding the best θ1 and θ2 values.  
 θ1: intercept  
 θ2: coefficient of x  
Once we find the best θ1 and θ2 values, we get the best-fit line. So when we are 
finally using our model for prediction, it will predict the value of y for the input value of 
x.  
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1. Cost Function (Mean Squared Error): To find the best-fitting line, linear regression minimizes 

the error between the predicted values (y and the actual target values y The most common cost 

function used is Mean Squared Error (MSE), which is defined as: 

 

 

2. Gradient Descent: In many cases, linear regression uses Gradient Descent to minimize the cost 

function and find the optimal weights. Gradient descent iteratively adjusts the weights in the 

direction that reduces the cost function: 

3. Normal Equation: For small datasets, the optimal weights can also be computed analytically using 

the Normal Equation without requiring gradient descent. This equation minimizes the cost 

function in a single step: 

Assumptions of Linear Regression: 

1. Linearity: The relationship between the independent and dependent variables is linear. 

2. Independence: The observations are independent of each other. 

3. Homoscedasticity: The variance of residuals (errors) is constant across all levels of the 

independent variables. 

4. Normality: The residuals (differences between actual and predicted values) are normally 

distributed. 

5. No multicollinearity: The independent variables are not highly correlated with each other. 

Applications of Linear Regression: 

 Predicting housing prices based on features like size, location, and number of rooms. 

 Forecasting sales based on historical data and economic indicators. 

 Risk analysis in finance, predicting stock prices or company performance. 

 Medical prediction models, such as estimating disease progression based on patient data. 

Advantages: 

 Simplicity: Linear regression is easy to implement and interpret. 

 Speed: It can be computationally efficient for small to medium-sized datasets. 

 Interpretability: The model provides insight into the relationships between features and the target. 
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Disadvantages: 

 Assumption of linearity: It only works well if the relationship between the features and the target 

is approximately linear. 

 Sensitive to outliers: Large outliers can have a disproportionate effect on the model. 

 Limited flexibility: In complex datasets with nonlinear relationships, linear regression might not 

capture the full picture. 

In summary, linear regression is a foundational tool in machine learning for regression tasks, providing a 

straightforward way to model relationships and make predictions, although it has limitations in cases where 

data relationships are nonlinear or complex. 

 

What is Logistic Regression? 

Logistic regression machine learning is a statistical method that is used for building machine learning 

models where the dependent variable is dichotomous: i.e. binary. Logistic regression is used to describe 

data and the relationship between one dependent variable and one or more independent variables. The 

independent variables can be nominal, ordinal, or of interval type. 

The name “logistic regression” is derived from the concept of the logistic function that it uses. The 

logistic function is also known as the sigmoid function. The value of this logistic function lies between 

zero and one. 

The following is an example of a logistic function we can use to find the probability of a vehicle breaking 

down, depending on how many years it has been since it was serviced last. 

 

Here is how you can interpret the results from the graph to decide whether the vehicle will break down or 

not. 

 Identify Key Metrics 
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 Understand Threshold Values 

 Analyze Trend Patterns 

 Compare Current Data to Baseline 

 Look for Warning Signs 

 Consider Historical Data 

 Assess Overall Condition 

 Make a Decision 

Logistic Regression in Machine Learning 

Logistic regression machine learning is a key classification technique. It can work with both numerical and 

categorical data, making it versatile for various applications. For example, it’s commonly used to predict 

whether a customer will leave a service (churn), identify fraudulent transactions, or determine if a patient 

has a specific condition. 

One of the main advantages of logistic regression is its simplicity. Logistic regression machine learning not 

only predicts outcomes but also helps understand which factors are most important for these predictions. 

This makes logistic regression a practical tool for solving classification problems while providing clear 

insights into the data. Its ease of use and interpretability make it popular in many machine-learning 

projects. 

Logistic Function - Sigmoid Function 

The sigmoid or logistic function is essential for converting predicted values into probabilities in logistic 

regression. This function maps any real number to a value between 0 and 1, ensuring that predictions 

remain within this probability range. Its "S" shaped curve helps translate raw scores into a more 

interpretable format. 

A threshold value is used in logistic regression to make decisions based on these probabilities. For instance, 

if the predicted probability is above a certain threshold, such as 0.5, the result is 1. If it’s below, it’s 

classified as 0. This approach allows for clear and actionable outcomes, such as determining whether a 

customer will purchase a product or a patient has a particular condition based on the probability calculated 

by the sigmoid function. 

https://www.simplilearn.com/what-is-data-article
https://www.simplilearn.com/machine-learning-projects-for-beginners-article
https://www.simplilearn.com/machine-learning-projects-for-beginners-article
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Types of Logistic Regression 

Logistic regression is a versatile machine learning algorithm used for binary and multi-class classification 

tasks. Depending on the nature of the dependent variable, logistic regression can be categorized into 

different types. The main types of logistic regression include Binary Logistic Regression, Multinomial 

Logistic Regression, and Ordinal Logistic Regression. 

Binary Logistic Regression 

Binary logistic regression is the most common type of logistic regression, where the dependent variable has 

only two possible outcomes or classes, typically represented as 0 and 1. It is used when the target variable 
is binary, such as yes/no, pass/fail, or true/false. The logistic function in binary logistic regression models 

the probability of an observation belonging to one of the two classes. 

Multinomial Logistic Regression 

Multinomial logistic regression, also known as softmax regression, is used when the dependent variable has 

more than two unordered categories. Unlike binary logistic regression, which deals with binary outcomes, 

multinomial logistic regression can handle multiple classes simultaneously. It models the probability of an 

observation belonging to each class using the softmax function, which ensures that the predicted 

probabilities sum up to one across all classes. 

Ordinal Logistic Regression 

Ordinal logistic regression is employed when the dependent variable has more than two ordered categories. 

In other words, the outcome variable has a natural ordering or hierarchy among its categories. Examples 

include ordinal scales like low, medium, and high, or Likert scale responses ranging from strongly disagree 

to strongly agree. Ordinal logistic regression models the cumulative probabilities of an observation falling 

into or below each category using the cumulative logistic distribution function. 

Assumption in a Logistic Regression Algorithm 

 In a binary logistic regression, the dependent variable must be binary 

 For a binary regression, the factor level one of the dependent variables should represent the desired outcome 

 Only meaningful variables should be included 

 The independent variables should be independent of each other. This means the model should have little or no 
multicollinearity 

 The independent variables are linearly related to the log odds 

 Logistic regression requires quite large sample sizes 

https://www.simplilearn.com/10-algorithms-machine-learning-engineers-need-to-know-article
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Logistic Regression Equation 

The logistic regression equation is: 

y= 11+ e(b0+b1x) 

where x is the input value, y is the predicted probability, b0 is the intercept, and b1 is the coefficient for the 

input x. This equation models the probability of a binary outcome based on a linear combination of input 

features. 

Properties of Logistic Regression Equation 

Logistic regression comes with a few key characteristics that define how it works and how it’s assessed: 

 Bernoulli Distribution 

In logistic regression, the predicted outcome is binary, meaning it follows a Bernoulli distribution. This 

simply means that the result can only be one of two possible values, like "yes" or "no," "success" or 

"failure." This fits perfectly with logistic regression’s goal of classifying data into two categories. 

 Maximum Likelihood Estimation 

The maximum likelihood method is used to find the best-fit parameters for a logistic regression model. 

This technique identifies the parameter values that make the observed data most probable. In other words, 

it adjusts the model to match the data it has seen best, which helps make accurate predictions. 

 Concordance for Model Fit 

Instead of using R squared like in linear regression to measure how well the model fits the data, logistic 

regression algorithms use concordance. Concordance assesses how well the model ranks the predicted 

probabilities. It checks whether the model is good at ordering outcomes correctly rather than just fitting the 

data. This approach is more beneficial for classification tasks where the goal is to predict which category 

something belongs to. 

Key Terminologies of Logistic Regression 

Apart from the properties of logistic regression, several key terms are crucial for understanding how the 

logistic regression machine learning model works: 

 Independent Variables 

https://www.simplilearn.com/tutorials/data-science-tutorial/bernoulli-distribution#:~:text=Conditions%20of%20Bernoulli%20Distribution,-There%20are%20certain&text=There%20should%20be%20only%20two,be%20independent%20of%20each%20other.
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These are the features or factors used to predict the model's outcome. They are the inputs that help 

determine the value of the dependent variable. For instance, independent variables might include age, 

income, and past buying behavior in a model predicting whether a customer will purchase a product. 

 Dependent Variable 

This is the outcome the model is trying to predict. In logistic regression, the dependent variable is binary, 

meaning it has two possible values, such as "yes" or "no," "spam" or "not spam." The goal is to estimate the 

probability of this variable being in one category versus the other. 

 Logistic Function 

The logistic function is a formula that converts the model’s input into a probability score between 0 and 1. 

This score indicates the likelihood of the dependent variable being 1. It’s what turns the raw predictions 

into meaningful probabilities that can be used for classification. 

 Odds 

Odds represent the ratio of the probability of an event happening to the probability of it not happening. For 

example, if there’s a 75% chance of an event occurring, the odds are 3 to 1. This concept helps to 

understand how likely an event is compared to it not happening. 

 Log-Odds 

Log-odds, or the logit function, is the natural logarithm of the odds. In logistic regression, the relationship 

between the independent variables and the dependent variable is expressed through log-odds. This helps 

model how changes in the independent variables affect the likelihood of the outcome. 

 Coefficient 

Coefficients are the values that show how each independent variable influences the dependent variable. 

They indicate the strength and direction of the relationship. For example, a positive coefficient means that 

as the independent variable increases, the likelihood of the dependent variable being 1 also increases. 

 Intercept 

The intercept is a constant term in the model representing the dependent variable's log odds when all the 

independent variables are zero. It provides a baseline level of the dependent variable’s probability before 

considering the effects of the independent variables. 

 Maximum Likelihood Estimation 

Maximum likelihood estimation (MLE) is the method used to find the best-fitting coefficients for the 

model. It determines the values that make the observed data most probable under the logistic regression 

framework, ensuring the model provides the most accurate predictions based on the given data. 
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How Does the Logistic Regression Algorithm Work? 

Consider the following example: An organization wants to determine an employee’s salary increase based 

on their performance. 

For this purpose, a linear regression algorithm will help them decide. Plotting a regression line by 

considering the employee’s performance as the independent variable, and the salary increase as the 

dependent variable will make their task easier. 

 

Now, what if the organization wants to know whether an employee would get a promotion or not based on 

their performance? The above linear graph won’t be suitable in this case. As such, we clip the line at zero 

and one, and convert it into a sigmoid curve (S curve). 

 

Based on the threshold values, the organization can decide whether an employee will get a salary increase 

or not. 

To understand logistic regression, let’s go over the odds of success. 

Odds (𝜃) = Probability of an event happening / Probability of an event not happening 

𝜃 = p / 1 - p 

The values of odds range from zero to ∞ and the values of probability lies between zero and one. 
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Consider the equation of a straight line:  

𝑦 = 𝛽0 + 𝛽1* 𝑥 

 

Here, 𝛽0 is the y-intercept 

𝛽1 is the slope of the line 

x is the value of the x coordinate 

y is the value of the prediction 

Now to predict the odds of success, we use the following formula: 

 

Exponentiating both the sides, we have: 

 

Let Y = e 𝛽0+𝛽1 * 𝑥 

Then p(x) / 1 - p(x) = Y 

p(x) = Y(1 - p(x)) 
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p(x) = Y - Y(p(x)) 

p(x) + Y(p(x)) = Y 

p(x)(1+Y) = Y 

p(x) = Y / 1+Y 

 

The equation of the sigmoid function is: 

 

The sigmoid curve obtained from the above equation is as follows: 

 

Now that you know more about logistic regression algorithms, let’s look at the difference between linear 

regression and logistic regression. 

Advantages of the Logistic Regression Algorithm 

 Logistic regression performs better when the data is linearly separable 

 It does not require too many computational resources as it’s highly interpretable 

 There is no problem scaling the input features—It does not require tuning 

 It is easy to implement and train a model using logistic regression 

https://www.simplilearn.com/tutorials/machine-learning-tutorial/linear-regression-vs-logistic-regression
https://www.simplilearn.com/tutorials/machine-learning-tutorial/linear-regression-vs-logistic-regression
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 It gives a measure of how relevant a predictor (coefficient size) is, and its direction of association (positive or 

negative). 

Code Implementation for Logistic Regression 

Let's explore how logistic regression can be implemented for different scenarios. Depending on the nature 

of the target variable, logistic regression can be used for both binomial and multinomial classification 

problems. 

 Binomial Logistic Regression 

In a binomial logistic regression, the target variable has only two possible outcomes, such as "accepted" vs. 

"rejected," "approved" vs. "denied," or "positive" vs. "negative." A practical example is predicting whether 

a loan application will be approved based on various applicant features like income, credit score, and 

employment history. 

To implement this, the necessary libraries are imported, and a dataset of loan applications is used to train 

the model. The data is split into training and testing sets to evaluate the model’s performance. After 

training the logistic regression model on the training data, it predicts the outcomes for the test data. The 

accuracy of the model is then calculated to measure its effectiveness. This provides a clear understanding 

of how the model predicts loan approvals. 

 Multinomial Logistic Regression 

Multinomial logistic regression is used when the target variable can have three or more possible outcomes, 

and these outcomes are not in any specific order. For example, consider a situation where we are 

classifying diseases into three categories: "disease A," "disease B," and "disease C." Here, logistic 

regression can help predict the likelihood of each category. 

In this example, the Digit Dataset is used to classify handwritten digits (0-9). Unlike binomial logistic 

regression, the data is split into training and testing sets. After training the model, predictions are made on 

the test data, and the model’s accuracy is evaluated. In this case, the model achieved an impressive 

accuracy of 96.52%. 

Python Implementation of Logistic Regression with Example 

Here’s how to use logistic regression in Python to predict SUV purchases based on user age and salary: 

 Data Preparation 

Start by loading your dataset, which includes user details like age and salary. From this dataset, you'll 

identify the columns representing the features (age and salary) and the target variable (whether the user will 

https://www.simplilearn.com/learn-the-basics-of-python-article
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purchase the SUV). The next step is to split this data into two parts: a training set to build the model and a 

test set to evaluate its performance. This separation ensures that the model is tested on new, unseen data. 

 Training the Model 

With your data prepared, you can now train the logistic regression model. Logistic regression is well-suited 

for binary outcomes, like predicting whether a user will buy the SUV (yes or no). During training, the 

model learns from the data by finding patterns in age and salary that help distinguish between users who 

are likely to purchase the SUV and those who are not. 

 Making Predictions 

Once the model is trained, it predicts outcomes on the test set. This means applying the model to new data 

to estimate the likelihood that each user will purchase the SUV. These predictions are then compared to 

actual outcomes to determine how accurate the model is. 

 Evaluating Performance 

To evaluate the model’s accuracy, you’ll create a confusion matrix. This matrix shows how many 

predictions were correct and how many were incorrect. It compares the predicted results with the purchase 

decisions, helping you understand how well the model performs. 

 Visualizing Results 

Finally, visualize the results to see how well the model has done. Plotting the data and predictions provides 

a clear picture of how the model separates users who are likely to buy the SUV from those who aren’t. This 

visualization makes interpreting the model’s performance and seeing its practical implications easier. 

Evaluate Logistic Regression Model 

Evaluating a logistic regression model involves several key metrics that assess its performance: 

 Accuracy 

Accuracy measures how often the model correctly classifies instances. It gives the proportion of correct 

predictions (both true positives and true negatives) out of all predictions made. High accuracy means the 

model is generally reliable at predicting the correct class. 

 Precision 

Precision focuses on the correctness of positive predictions. It tells you how many of the instances 

predicted as positive by the model are positive. This metric is especially important when the cost of false 
positives (incorrectly predicting a negative instance as positive) is high. 
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 Recall 

Recall, also known as sensitivity or the true positive rate, evaluates how well the model identifies actual 

positive instances. It shows the proportion of actual positives that the model correctly predicts. High recall 

indicates that the model identifies positive cases, even if it means more false positives. 

 F1 Score 

The F1 Score is a combined measure of precision and recall, providing a single value that balances both 

metrics. It is useful when the trade-off between precision and recall must be balanced, especially in 

situations where both false positives and false negatives are important. 

 Area Under the Receiver Operating Characteristic Curve (AUC-ROC) 

The AUC-ROC assesses the model’s ability to distinguish between positive and negative classes across 

various thresholds. It reflects how well the model performs overall in classifying different classes, with a 

higher score indicating better performance. 

 Area Under the Precision-Recall Curve (AUC-PR) 

The AUC-PR measures the model’s precision and recall performance across different levels. It is handy for 

evaluating models on imbalanced datasets where one class is much more common than the other. 

Precision-Recall Tradeoff in Logistic Regression Threshold Setting 

Let’s now look at how setting the decision threshold in logistic regression affects the balance between 

precision and recall. 

 Low Precision/High Recall 

When it's crucial to catch as many positive cases as possible, even if it means a higher number of false 

positives, a threshold that boosts recall is the way to go. For example, in medical tests for serious 

conditions like cancer, you want to identify every possible case, even if some healthy people are 

mistakenly diagnosed as having the disease. Using a lower threshold increases the chances of detecting all 

potential cases, which is vital for early intervention, despite the trade-off of some incorrect positive results. 

 High Precision/Low Recall 

On the other hand, if your priority is to avoid false positives and you can accept missing some true 

positives, you should choose a threshold that enhances precision. For instance, in targeted advertising, you 

want to be sure that those identified as likely to respond positively will actually do so. A higher threshold 
means that only those with a strong likelihood of responding are selected, reducing the risk of spending 

resources on people who are unlikely to engage, even though it might lead to missing some genuine 

positive responses. 
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Linear Regression vs. Logistic Regression 

Linear Regression Logistic Regression 

Used to solve regression problems Used to solve classification problems 

The response variables are continuous in 
nature 

The response variable is categorical in nature 

It helps estimate the dependent variable 
when there is a change in the 
independent variable 

It helps to calculate the possibility of a particular 
event taking place 

It is a straight line It is an S-curve (S = Sigmoid) 

Logistic Regression Best Practices 

Here are the key best practices for ensuring that logistic regression models are accurate and effective: 

 Identify Dependent Variables to Ensure Model Consistency 

In logistic regression, it's essential to have an inherently binary dependent variable. This means it should 

naturally fall into one of two categories, such as "yes/no," "disease/no disease," or 

"successful/unsuccessful."  

For example, in healthcare research, outcomes like "cancerous/non-cancerous" fit well with logistic 

regression. However, it's crucial to avoid turning continuous variables (like income) into binary categories 

(e.g., "rich" versus "poor") without a strong justification. Doing so can lead to a significant loss of 

information and reduce the model's effectiveness, as this recoding oversimplifies complex data and might 

obscure important nuances. 

 Discover the Technical Requirements of the Model 

Logistic regression needs careful attention to several technical factors to work properly and efficiently: 

 Increase the Number of Observations 

More data generally leads to more reliable and stable estimates. Larger sample sizes help reduce the impact 

of multicollinearity (when independent variables are highly correlated), which can skew results. 

 Use Data Reduction Techniques 
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Techniques like principal component analysis (PCA) can help manage multicollinearity by combining 

correlated variables into fewer synthetic measures. This reduces redundancy and improves model 

performance. 

 Monitor Sample Size 

Small sample sizes can lead to inaccurate and unstable estimates. Ensuring a sufficiently large sample size 

is crucial for obtaining reliable results. 

 Exclude Extreme Outliers 

Outliers can disproportionately affect the model's coefficients. Identifying and removing these outliers 

helps create a model that better represents most of the data and improves overall fit. 

 Estimate the Model and Evaluate the Goodness of Fit 

Accurate model estimation involves several key steps that ensure the robustness and reliability of the 

logistic regression model: 

 Transparency 

Report all relevant details about the model, including the software and data used. Access to the original 

data and computational scripts enhances replicability and allows others to verify the results. 

 Goodness-of-Fit Evaluation 

Assess how well the model fits the data by comparing it to a null model, which includes only the intercept 

and no predictors. This comparison helps determine if the logistic regression model significantly improves 

predictions over a simple baseline model. A model with a better fit will generally provide more accurate 

predictions and insights. 

 Appropriately Interpret the Results 

Interpreting logistic regression results requires understanding the coefficients expressed in terms of odds 

ratios rather than raw values. Here’s how to interpret them: 

 Odds Ratios 

A coefficient represents how changes in an independent variable affect the odds of the dependent variable 

occurring. For example, a coefficient of 0.4 suggests that a one-unit increase in the independent variable 

corresponds to an increase of 0.4 in the log odds of the dependent variable. 

 Contextual Explanation 

Unlike linear regression, where coefficients directly show the impact on the dependent variable, logistic 

regression coefficients must be explained in terms of odds. This means understanding and describing how 

each predictor influences the likelihood of the outcome occurring. 

 Validate Observed Results 

https://www.simplilearn.com/tutorials/machine-learning-tutorial/principal-component-analysis
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Validation is crucial to ensure the model's findings are reliable and applicable. Here is how it can be 

effectively carried out: 

 Use a Subsample 

Test the model on a subsample of the original dataset to assess its performance. This helps confirm that the 

model’s predictions are specific to the training data and can be generalized to other datasets. 

 External Validity 

This practice assesses whether the results can be applied to other populations or settings. It ensures that the 

model’s findings are robust and not limited to the particular sample used for training. Validating with 

different data helps confirm that the model’s predictions are accurate and generalizable. 

Applications of Logistic Regression 

Let's explore some of the most common applications of logistic regression across different industries: 

 Optical Character Recognition (OCR) 

Optical Character Recognition (OCR) is a process that converts handwritten or printed characters into 

digital text, making it readable by computers. Since OCR involves identifying specific characters from 

possible outcomes, it qualifies as a classification task in machine learning.  

Logistic regression machine learning is instrumental in this context, where it helps classify characters as 

present or absent in an image. Features such as lines, curves, and edges extracted from the image serve as 

input variables, while logistic regression estimates the likelihood of character presence. By applying the 

model to new images, accurate character recognition becomes possible. 

 Fraud Detection 

Fraud detection identifies and prevents deceptive activities, particularly in finance, insurance, and e-

commerce. Logistic regression is a powerful tool for detecting fraudulent transactions by classifying them 

as either legitimate or fraudulent. The model uses independent variables such as transaction value, location, 

time, and user information to predict the likelihood of fraud. Organizations can significantly improve their 
ability to spot and stop fraudulent activities by combining logistic regression with other methods like 

anomaly detection. 

 Disease Spread Prediction 

Predicting the spread of diseases can also be approached as a classification problem, where the goal is to 

determine whether an individual is likely to contract a disease. Logistic regression helps model the 

relationship between population demographics, health conditions, environmental factors, medical resource 

availability, and the probability of disease transmission. Using historical data, logistic regression can 

predict disease spread patterns, helping public health officials respond more effectively. Combining logistic 

https://www.simplilearn.com/what-is-ocr-optical-character-recognition-article
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regression with time series analysis and clustering techniques can further enhance the accuracy of 

predictions. 

 Illness Mortality Prediction 

In healthcare, logistic regression is often used to predict mortality in patients suffering from specific 

illnesses. The model is trained using data on patient demographics, health status, and clinical indicators 

such as age, gender, and vital signs. By analyzing these variables, logistic regression can estimate the 

probability of a patient dying from the illness. This enables medical professionals to make informed 

decisions about patient care, improving outcomes and resource allocation. 

 Churn Prediction 

Churn prediction identifies customers likely to stop using a product or service. Logistic regression models 

customer churn by analyzing demographic information, usage patterns, and behavior. The model assigns a 

probability to each customer’s likelihood of churning, enabling businesses to take proactive measures to 

retain them. Interventions such as targeted marketing campaigns, personalized offers, and enhanced 

customer support can be deployed based on these predictions, helping reduce churn rates and improve 

customer loyalty. 

 

 

Generalized Linear Models (GLMs) are a flexible generalization of ordinary linear 

regression models in machine learning and statistics. They are used for modeling relationships between a 

response variable (dependent variable) and one or more predictor variables (independent variables). GLMs 

extend linear models by allowing for response variables that have error distributions other than a normal 

distribution. 

Here’s an overview of key concepts in GLMs and their application in machine learning: 

Key Components of GLMs: 

1. Linear Predictor: 

A linear combination of input features. The GLM starts by assuming that the target variable can be 
modeled as a linear function of the input features: 

η=Xβ 

where X is the matrix of input features, β is a vector of model coefficients, and η\etaη is the linear 

predictor. 

2. Link Function: 

The link function g(⋅) transforms the linear predictor η\etaη to map it to the mean of the response 

variable, ensuring that predictions stay within valid ranges. The link function connects the linear 

predictor to the expected value of the response: 

g(E(y))=η 
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Common link functions include: 

o Identity link: Used in linear regression (no transformation). 

o Logit link: Used in logistic regression, useful for binary outcomes. 

o Log link: Used in Poisson regression, useful for count data. 

3. Response Distribution: 

Unlike linear regression, which assumes that the target variable follows a normal distribution, 

GLMs allow for various types of distributions in the exponential family. Common choices include: 

o Normal distribution: For continuous data (standard linear regression). 

o Binomial distribution: For binary or categorical outcomes (logistic regression). 

o Poisson distribution: For count data. 

Common Types of GLMs: 

1. Linear Regression (Normal distribution, Identity link): 

o Predicts a continuous outcome using a linear relationship with input features. 

2. Logistic Regression (Binomial distribution, Logit link): 

o Predicts binary or categorical outcomes (0 or 1, or multiple classes with extensions like 

softmax). 

3. Poisson Regression (Poisson distribution, Log link): 

o Used for modeling count data where the outcome is non-negative integers. 

4. Gamma Regression (Gamma distribution, Log link): 

o Used for modeling skewed continuous data, often in survival analysis or insurance. 

GLMs in Machine Learning: 

In machine learning, GLMs are often used as interpretable models that serve as the foundation for more 

complex algorithms. They offer a straightforward way to understand the relationship between features and 

the response variable. While more flexible models like decision trees, random forests, or neural networks 

can often achieve better predictive performance, GLMs are valued for their simplicity and interpretability. 

Some typical applications of GLMs in machine learning include: 

 Classification: Logistic regression is a widely used algorithm for binary classification tasks. 

 Regression analysis: Linear regression is a core technique for modeling relationships in continuous 

data. 

 Survival analysis: GLMs with the appropriate distribution and link functions (e.g., gamma 

distribution) are used for time-to-event modeling. 

Advantages: 

 Interpretability: The coefficients in a GLM model are easy to interpret. 

 Flexibility: By using different link functions and distributions, GLMs can model a wide variety of 

data types. 

 Efficiency: They are relatively easy to train and computationally efficient compared to more 

complex models. 

Limitations: 

 Assumptions: GLMs assume a specific form for the error distribution and linear relationships, 

which may not hold for all data. 

 Limited Non-linearity: Although flexible, GLMs may not capture complex non-linear patterns in 

data like neural networks or tree-based models can. 



43 
 

Extensions of GLMs: 

 Generalized Additive Models (GAMs): GAMs allow for non-linear relationships by applying 

smoothing functions to each predictor while still maintaining the additive structure of a GLM. 

 Regularized GLMs: Lasso (L1 regularization) and Ridge (L2 regularization) are common 

techniques used to extend GLMs, preventing overfitting and improving generalization. 

GLMs provide a solid, interpretable starting point in many machine learning tasks, particularly in 

regression and classification problems. 

 

Support Vector Machine Algorithm 
Support Vector Machine or SVM is one of the most popular Supervised Learning algorithms, which is 
used for Classification as well as Regression problems. However, primarily, it is used for 
Classification problems in Machine Learning. 

The goal of the SVM algorithm is to create the best line or decision boundary that can segregate n-
dimensional space into classes so that we can easily put the new data point in the correct category in 
the future. This best decision boundary is called a hyperplane. 

SVM chooses the extreme points/vectors that help in creating the hyperplane. These extreme cases 
are called as support vectors, and hence algorithm is termed as Support Vector Machine. Consider 
the below diagram in which there are two different categories that are classified using a decision 
boundary or hyperplane: 

 

Support Vector Machine Terminology 
1. Hyperplane: Hyperplane is the decision boundary that is used to separate the 

data points of different classes in a feature space. In the case of linear 
classifications, it will be a linear equation i.e. wx+b = 0. 

2. Support Vectors: Support vectors are the closest data points to the hyperplane, 
which makes a critical role in deciding the hyperplane and margin.  
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3. Margin: Margin is the distance between the support vector and hyperplane. The 
main objective of the support vector machine algorithm is to maximize the 
margin.  The wider margin indicates better classification performance. 

4. Kernel: Kernel is the mathematical function, which is used in SVM to map the 
original input data points into high-dimensional feature spaces, so, that the 
hyperplane can be easily found out even if the data points are not linearly 
separable in the original input space. Some of the common kernel functions are 
linear, polynomial, radial basis function(RBF), and sigmoid. 

5. Hard Margin: The maximum-margin hyperplane or the hard margin hyperplane is 
a hyperplane that properly separates the data points of different categories 
without any misclassifications. 

6. Soft Margin: When the data is not perfectly separable or contains outliers, SVM 
permits a soft margin technique. Each data point has a slack variable introduced 
by the soft-margin SVM formulation, which softens the strict margin requirement 
and permits certain misclassifications or violations. It discovers a compromise 
between increasing the margin and reducing violations. 

7. C: Margin maximisation and misclassification fines are balanced by the 
regularisation parameter C in SVM. The penalty for going over the margin or 
misclassifying data items is decided by it. A stricter penalty is imposed with a 
greater value of C, which results in a smaller margin and perhaps fewer 
misclassifications. 

8. Hinge Loss: A typical loss function in SVMs is hinge loss. It punishes incorrect 
classifications or margin violations. The objective function in SVM is frequently 
formed by combining it with the regularisation term. 

 

SVM algorithm can be used for Face detection, image classification, text categorization, etc. 

Types of SVM 
SVM can be of two types: 

Advertisement 

o Linear SVM: Linear SVM is used for linearly separable data, which means if a dataset can be 
classified into two classes by using a single straight line, then such data is termed as linearly 
separable data, and classifier is used called as Linear SVM classifier. 

o Non-linear SVM: Non-Linear SVM is used for non-linearly separated data, which means if a 
dataset cannot be classified by using a straight line, then such data is termed as non-linear data 
and classifier used is called as Non-linear SVM classifier. 

How does SVM works? 
Linear SVM: 

The working of the SVM algorithm can be understood by using an example. Suppose we have a 
dataset that has two tags (green and blue), and the dataset has two features x1 and x2. We want a 
classifier that can classify the pair(x1, x2) of coordinates in either green or blue. Consider the below 
image: 
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So as it is 2-d space so by just using a straight line, we can easily separate these two classes. But 
there can be multiple lines that can separate these classes. Consider the below image: 

 

Hence, the SVM algorithm helps to find the best line or decision boundary; this best boundary or 
region is called as a hyperplane. SVM algorithm finds the closest point of the lines from both the 
classes. These points are called support vectors. The distance between the vectors and the 
hyperplane is called as margin. And the goal of SVM is to maximize this margin. 
The hyperplane with maximum margin is called the optimal hyperplane. 
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Non-Linear SVM: 

If data is linearly arranged, then we can separate it by using a straight line, but for non-linear data, we 
cannot draw a single straight line. Consider the below image: 

 

So to separate these data points, we need to add one more dimension. For linear data, we have used 
two dimensions x and y, so for non-linear data, we will add a third dimension z. It can be calculated 
as: 

z=x2 +y2 

By adding the third dimension, the sample space will become as below image: 
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So now, SVM will divide the datasets into classes in the following way. Consider the below image: 

 

Since we are in 3-d Space, hence it is looking like a plane parallel to the x-axis. If we convert it in 2d 
space with z=1, then it will become as: 
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Advantages of SVM 
 Effective in high-dimensional cases. 
 Its memory is efficient as it uses a subset of training points in the decision function 

called support vectors. 
 Different kernel functions can be specified for the decision functions and its 

possible to specify custom kernels. 

Machine Learning's Non-Linearity 

More intricate correlations between input feature and output can be captured 

by non-linear models. These models can represent complex patterns using 

non-linear transformations or activation functions and do not presuppose a 

straight-line relationship. 

Non-Linear Model Examples 

1. Decision Trees: These models provide a tree-like structure that can 

represent non-linear relationships by dividing data into branches 

based on feature values. 

2. Gradient Boosting Machines (GBMs) and Random Forests are two 

ensemble techniques that integrate several decision trees to improve 

prediction performance. 
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3. Non-Linear Kernels in Support Vector Machines (SVMs): SVMs can 

project data into higher-dimensional spaces, where a linear separator 

can be identified, by using kernel functions. 

4. Neural Networks: Capable of modeling extremely complicated 

interactions, these networks are made up of layers of interconnected 

nodes, or neurons, with non-linear activation functions. 

Benefits of Non-Linear Modeling 

 Capability to Recap Complex Patterns: Non-linear models are able to 

manage complex feature interactions and linkages. 

 Flexibility: They are appropriate for a range of applications since they 

can adjust to a large variety of data patterns. 

The Drawbacks Non-Linear Models 

 Complexity and Interpretability: Compared to linear models, non-

linear models are frequently more complex and challenging to 

understand. 

 Computationally Intense: They demand greater processing power 

and more time for training. 

 Risk of Overfitting: Non-linear models are more likely to overfitting 

because of their flexibility, particularly when there is a lack of data. 

Selecting Linear versus Non-Linear Models 

Using a linear or non-linear model is determined by a number of factors, 

including: 

 Nature of the Data: A linear model might be adequate if there is a 

roughly linear relationship between the inputs and the goal variable. 

Non-linear models are better suited for more intricate interactions. 
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 Conditions for Interpretability: Linear models are favored if 

interpretability of the model is important. Non-linear models could 

be preferable in situations when interpretability is less important and 

performance is more important. 

 Computing Capabilities: Computationally, linear models are less 

demanding. Linear models could be more practical for real-time 

applications or huge datasets. 

 Danger of Overfitting Because they are less likely to overfit, linear 

models are safer when there is less data. To prevent, non-linear 

models need to be carefully regularized and validated overfitting. 

In conclusion 

Comprehending linearity and non-linearity is essential for machine learning. 

The efficiency, interpretability, and simplicity of linear models make them 

useful in a wide range of applications. But they might not be able to capture 

the complexity of real-world data sufficiently. Non-linear models provide the 

flexibility needed to depict complex relationships, although using more 

resources and being more complex. Selecting between linear and non-linear 

models should take into account the specific requirements and constraints of 

the work. Experts may develop machine learning models that perform better 

and draw more insightful conclusions by comprehending these concepts. 

 

Major Kernel Function in Support Vector Machine 

Kernel Function is a method used to take data as input and transform it into the 

required form of processing data. “Kernel” is used due to a set of mathematical 

functions used in Support Vector Machine providing the window to manipulate the 

data. So, Kernel Function generally transforms the training set of data so that a non-

linear decision surface is able to transform to a linear equation in a higher number of 

dimension spaces. Basically, It returns the inner product between two points in a 

standard feature dimension.  

In Support Vector Machines (SVMs), there are several types of kernel functions that can be used to 
map the input data into a higher-dimensional feature space. The choice of kernel function depends on 
the specific problem and the characteristics of the data. 

Here are some most commonly used kernel functions in SVMs: 

Linear Kernel 
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A linear kernel is a type of kernel function used in machine learning, including in SVMs (Support 
Vector Machines). It is the simplest and most commonly used kernel function, and it defines the dot 
product between the input vectors in the original feature space. 

The linear kernel can be defined as: 

1. K(x, y) = x .y   
Where x and y are the input feature vectors. The dot product of the input vectors is a measure of their 
similarity or distance in the original feature space. 

When using a linear kernel in an SVM, the decision boundary is a linear hyperplane that separates 
the different classes in the feature space. This linear boundary can be useful when the data is already 
separable by a linear decision boundary or when dealing with high-dimensional data, where the use 
of more complex kernel functions may lead to overfitting. 

Polynomial Kernel 

A particular kind of kernel function utilised in machine learning, such as in SVMs, is a polynomial 
kernel (Support Vector Machines). It is a nonlinear kernel function that employs polynomial functions 
to transfer the input data into a higher-dimensional feature space. 

 

One definition of the polynomial kernel is: 

Where x and y are the input feature vectors, c is a constant term, and d is the degree of the 
polynomial, K(x, y) = (x. y + c)d. The constant term is added to, and the dot product of the input 
vectors elevated to the degree of the polynomial. 

The decision boundary of an SVM with a polynomial kernel might capture more intricate correlations 
between the input characteristics because it is a nonlinear hyperplane. 

The degree of nonlinearity in the decision boundary is determined by the degree of the polynomial. 

The polynomial kernel has the benefit of being able to detect both linear and nonlinear correlations in 
the data. It can be difficult to select the proper degree of the polynomial, though, as a larger degree 
can result in overfitting while a lower degree cannot adequately represent the underlying relationships 
in the data. 

In general, the polynomial kernel is an effective tool for converting the input data into a higher-
dimensional feature space in order to capture nonlinear correlations between the input 
characteristics. 

Gaussian (RBF) Kernel 
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It is used to perform transformation when there is no prior knowledge about 
data. 

The Gaussian kernel, also known as the radial basis function (RBF) kernel, is a popular kernel 
function used in machine learning, particularly in SVMs (Support Vector Machines). It is a nonlinear 
kernel function that maps the input data into a higher-dimensional feature space using a Gaussian 
function. 

The Gaussian kernel can be defined as: 

1. K(x, y) = exp(-gamma * ||x - y||^2)   
Where x and y are the input feature vectors, gamma is a parameter that controls the width of the 
Gaussian function, and ||x - y||^2 is the squared Euclidean distance between the input vectors. 

When using a Gaussian kernel in an SVM, the decision boundary is a nonlinear hyper plane that can 
capture complex nonlinear relationships between the input features. The width of the Gaussian 
function, controlled by the gamma parameter, determines the degree of nonlinearity in the decision 
boundary. 

One advantage of the Gaussian kernel is its ability to capture complex relationships in the data 
without the need for explicit feature engineering. However, the choice of the gamma parameter can 
be challenging, as a smaller value may result in under fitting, while a larger value may result in over 
fitting. 

Laplace Kernel 

The Laplacian kernel, also known as the Laplace kernel or the exponential kernel, is a type of kernel 
function used in machine learning, including in SVMs (Support Vector Machines). It is a non-
parametric kernel that can be used to measure the similarity or distance between two input feature 
vectors. 

The Laplacian kernel can be defined as: 

1. K(x, y) = exp(-gamma * ||x - y||)   
Where x and y are the input feature vectors, gamma is a parameter that controls the width of the 
Laplacian function, and ||x - y|| is the L1 norm or Manhattan distance between the input vectors. 

When using a Laplacian kernel in an SVM, the decision boundary is a nonlinear hyperplane that can 
capture complex relationships between the input features. The width of the Laplacian function, 
controlled by the gamma parameter, determines the degree of nonlinearity in the decision boundary. 
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What is Machine Learning?  

  

Machine learning is the science of teaching and educating the computer i.e. a machine to 

behave and act like a human and improve itself over time. This is done by feeding the machine 

with data and information in the form of real-world interactions, it can be done through coding 

and feeding the machine with the desired data.  

  

Through Machine learning algorithms, the device learns from the data provided and acts 

accordingly in the situation provided. It is basically a part of artificial intelligence that provides 

computers the ability to learn through data and observations.  

  

Supervised Machine Learning  

  

Supervised machine learning is a type of machine learning where a specifically known dataset 

is provided to make predictions. In the dataset, there are two types of variables, input 

variable(X), output variable(Y).   

  

In this, a supervised learning algorithm builds a model where the response variable is used over 

the known dataset, to check the accuracy of the model. 

  

As a part of supervised machine learning, classification has achieved a speculations rise.  

 

  

https://www.analyticssteps.com/blogs/top-10-machine-learning-algorithms
https://www.analyticssteps.com/blogs/types-machine-learning
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Definition of Classification 

  

In machine learning, Classification, as the name suggests, classifies data into different 

parts/classes/groups. It is used to predict from which dataset the input data belongs to. 

  

For example, if we are taking a dataset of scores of a cricketer in the past few matches, along 

with average, strike rate, not outs etc, we can classify him as “in form” or “out of form”.  

  

Classification is the process of assigning new input variables (X) to the class they most likely 

belong to, based on a classification model, as constructed from previously labeled training 

data.  

  

Data with labels is used to train a classifier such that it can perform well on data without labels 

(not yet labeled). This process of continuous classification, of previously known classes, trains 

a machine. If the classes are discrete, it can be difficult to perform classification tasks. 

 

  

Types of Classification 

 There are two types of classifications; 

 Binary classification 

 Multi-class classification 

  

Binary Classification 

  

It is a process or task of classification, in which a given data is being classified into two 

classes.  It’s basically a kind of prediction about which of two groups the thing belongs to.  

  

Let us suppose, two emails are sent to you, one is sent by an insurance company that keeps 

sending their ads, and the other is from your bank regarding your credit card bill. The email 

service provider will classify the two emails, the first one will be sent to the spam folder and 

the second one will be kept in the primary one.  
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 This process is known as binary classification, as there are two discrete classes, one is spam 

and the other is primary. So, this is a problem of binary classification. 

 Binary classification uses some algorithms to do the task, some of the most common 

algorithms used by binary classification are . 

  

 Logistic Regression 

 k-Nearest Neighbors 

 Decision Trees 

 Support Vector Machine 

 Naive Bayes 

 

Term Related to binary classification  

  

1. PRECISION 

  

Precision in binary classification (Yes/No) refers to a model's ability to correctly interpret 

positive observations. In other words, how often does a positive value forecast turn out to 

be correct? We may manipulate this metric by only returning positive for the single 

observation in which we have the most confidence. 

  

2. RECALL 

  

The recall is also known as sensitivity.  In binary classification (Yes/No) recall is used to 

measure how “sensitive” the classifier is to detecting positive cases. To put it another 

way, how many real findings did we “catch” in our sample? We may manipulate this 

metric by classifying both results as positive. 

  

3. F1 SCORE 

  

https://www.analyticssteps.com/blogs/introduction-logistic-regression-sigmoid-function-code-explanation
https://www.analyticssteps.com/blogs/how-does-k-nearest-neighbor-works-machine-learning-classification-problem
https://www.analyticssteps.com/blogs/introduction-decision-tree-algorithm-machine-learning
https://www.analyticssteps.com/blogs/how-does-support-vector-machine-algorithm-works-machine-learning
https://www.analyticssteps.com/blogs/what-naive-bayes-algorithm-machine-learning
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The F1 score can be thought of as a weighted average of precision and recall, with the 

best value being 1 and the worst being 0. Precision and recall also make an equal 

contribution to the F1 ranking.  

 

  

Multiclass Classification 

  

Multi-class classification is the task of classifying elements into different classes. Unlike 

binary, it doesn’t restrict itself to any number of classes.  

  

Examples of multi-class classification are  

 classification of news in different categories,  

 classifying books according to the subject,  

 classifying students according to their streams etc. 

  

In these, there are different classes for the response variable to be classified in and thus 

according to the name, it is a Multi-class classification. 

 Can a classification possess both binary or multi-class?  

 Let us suppose we have to do sentiment analysis of a person, if the classes are just “positive” 

and “negative”, then it will be a problem of binary class. But if the classes are “sadness”, 

happiness”, “disgusting”, “depressed”, then it will be called a problem of Multi-class 

classification. 
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The multiclass model can find a good decision boundary, whereas the binary classifier is completely 

lost as the data cannot be separated linearly. I suppose this was what you were thinking. 

This proves that multiclass classifier can sometimes work better than binary classifier. I don't think this 

is in general true though. Couple of things to consider come to mind: 

 The multiclass model is more complex. If the anomalies could be separated e.g. by linear decision 

boundary, the multiclass approach would add unnecessary complexity and make the model prone to 

overfitting. 

 Related to this, maybe some of the anomaly groups contain only couple of samples. In this case some of 

the decision boundaries would be very poorly estimated by the multiclass classifier. 

 Instead of using a multiclass classifier, you can just use a more complex model and solve the binary 

classification problem directly. 

The only way to know which approach will work best for your particular problem is usually just to test 

different models. The idea of first fitting multiclass model and then reducing the output to binary 

might work, or not. If nothing else, the output contains more information; maybe someone cares 

which type of anomaly it is. 

 

  

Binary vs Multiclass Classification 

 

  

Parameters Binary classification  Multi-class classification 

No. of classes 
It is a classification of two groups, i.e. 
classifies objects in at most two classes. 

There can be any number of classes in it, i.e., 
classifies the object into more than two classes. 

Algorithms 

used  

The most popular algorithms used by the 
binary classification are- 
  

Popular algorithms that can be used for multi-
class classification include: 
k-Nearest Neighbors 
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Logistic Regression 
k-Nearest Neighbors 
Decision Trees 
Support Vector Machine 
Naive Bayes 

Decision Trees 
Naive Bayes 

Random Forest. 
Gradient Boosting 

Examples  

Examples of binary classification include-  
Email spam detection (spam or not). 
Churn prediction (churn or not). 
Conversion prediction (buy or not). 

Examples of multi-class classification include: 
Face classification. 
Plant species classification. 
Optical character recognition. 

 

  

Ranking Algorithms & Types: Concepts & 

Examples 
Ranking algorithms are used to rank items in a dataset according to some criterion. Ranking 
algorithms can be divided into two categories: deterministic and probabilistic. Ranking algorithms are 
used in search engines to rank webpages according to their relevance to a user’s search query. In this 
article, we will discuss the different types of ranking algorithms  

What is a Ranking Algorithm? 
A ranking algorithm is a procedure that ranks items in a dataset according to some criterion. Ranking 
algorithms are used in many different applications, such as web search, recommender systems, 
and machine learning. 
A ranking algorithm is a procedure used to rank items in a dataset according to some criterion. 
Ranking algorithms can be divided into two categories: deterministic and probabilistic. 

 Deterministic ranking algorithms: A deterministic ranking algorithm is one in which the 
order of the items in the ranked list is fixed and does not change, regardless of the input data. An 
example of a deterministic ranking algorithm is the rank-by-feature algorithm. In this algorithm, 
each item is assigned a rank based on its feature value. The item with the highest feature value is 
assigned a rank of 1, and the item with the lowest feature value is assigned a rank of N, where N is 
the number of items in the dataset. One real-world application of a deterministic ranking 
algorithm is the ordering of items in a grocery store. The items in a grocery store are usually 
organized by department, such as produce, meat, dairy, etc. Within each department, the items 
are usually organized alphabetically. This type of organization is an example of a deterministic 
ranking algorithm.  

 Sorting algorithms are used in deterministic ranking algorithms to order the items in the 
ranked list. There are many different types of sorting algorithms, each with its own set of 
advantages and disadvantages. Some of the most common sorting algorithms are insertion 
sort, merge sort, and quicksort. 

 Probabilistic ranking algorithms: In a probabilistic ranking algorithm, the order of the 
items in the ranked list may vary, depending on the input data. An example of a probabilistic 
ranking algorithm is the rank-by-confidence algorithm. In this algorithm, each item is assigned a 
rank based on its confidence value. The item with the highest confidence value is assigned a rank 
of 1, and the item with the lowest confidence value is assigned a rank of N, where N is the number 
of items in the dataset. Another example of a probabilistic ranking algorithm is the Bayesian 
spam filter. In this algorithm, each email is assigned a probability of being spam. The emails with 
the highest probabilities are ranked first, and the emails with the lowest probabilities are ranked 
last. Probabilistic ranking algorithms can be used in web search engines to rank webpages 

https://www.analyticssteps.com/blogs/how-use-random-forest-classifier-machine-learning
https://vitalflux.com/recommender-systems-in-machine-learning-examples/
https://vitalflux.com/category/machine-learning
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according to their relevance to a user’s search query. The ranking algorithm uses the input data, 
such as the number of links to the webpage from other websites and the number of times the 
keyword appears on the page, to calculate the page’s relevance score. The higher the relevance 
score, the higher the page is ranked in the search results. The probabilistic ranking algorithms 
can as well be used in machine learning algorithms to rank items in a dataset according to their 
likelihood of being a positive example. The ranking algorithm uses the input data, such as the 
number of features that are common to both positive and negative examples, to calculate the 
item’s relevance score. The higher the relevance score, the more likely it is that the item is a 
positive example. There are many different types of probabilistic ranking algorithms, each with 
its own set of advantages and disadvantages. Some common types of probabilistic ranking 
algorithms are: 

 Bayesian Ranking Algorithm: A Bayesian ranking algorithm is a probabilistic ranking 
algorithm that uses a Bayesian network to calculate the item’s relevance score. The Bayesian 
network is a graphical model that represents a set of random variables and their conditional 
dependencies. The Bayesian ranking algorithm uses the input data, such as the number of 
features that are common to both positive and negative examples, to calculate the item’s 
relevance score. The higher the relevance score, the more likely it is that the item is a positive 
example. 

 Log-linear Model Ranking Algorithm: A log-linear model ranking algorithm is a 
probabilistic ranking algorithm that uses a log-linear model to calculate the item’s relevance 
score. The log-linear model is a mathematical model that describes the relationship between two 
or more variables in terms of a linear combination of the logarithms of the variables. 

One of the most common applications of ranking algorithms is in search engines. Search engines use 
ranking algorithms to determine which webpages are most relevant to a user’s search query. Ranking 
algorithms are also used in recommendation systems to recommend items that a user may be 
interested in. The following is a quick overview on ranking algorithm used by popular search engines: 

 Google Ranking Algorithm: Google’s ranking algorithm is a secret, but we know that it is a 
probabilistic ranking algorithm. Google uses a variety of factors to rank webpages, including the 
number of links to a page, the page’s PageRank, and the relevance of the search query to the page. 
Google’s PageRank algorithm is a probabilistic ranking algorithm that uses the number of links to 
a webpage as a measure of its importance. The higher the PageRank of a webpage, the more likely 
it is to be ranked higher in the search results. 

 Amazon Ranking Algorithm: Amazon’s ranking algorithm is also a probabilistic ranking 
algorithm. Amazon uses a variety of factors to rank items, including the number of reviews an 
item has, the average rating of an item, and the price of an item. Amazon’s algorithm is designed 
to recommend items that are relevant to a user’s search query and that are popular with other 
users. 

 Facebook Ranking Algorithm: Facebook’s ranking algorithm is a secret, but we know that it 
is a probabilistic ranking algorithm. Facebook uses a variety of factors to rank news stories, 
including the number of likes, shares, and comments a story has, the story’s PageRank, and the 
relevance of the story to the user’s News Feed. Facebook’s algorithm is designed to show users the 
stories that are most relevant to them and that are being talked about by their friends. 

 Twitter Ranking Algorithm: Twitter’s ranking algorithm is also a probabilistic ranking 
algorithm. Twitter uses a variety of factors to rank tweets, including the number of retweets, 
favorites, and replies a tweet has, the tweeter’s PageRank, and the relevance of the tweet to the 
user’s timeline. Twitter’s algorithm is designed to show users the tweets that are most relevant to 
them and that are being talked about by their friends. 

Types of Ranking Algorithms 
There are many different types of ranking algorithms, each with its own set of advantages and 
disadvantages. Some of the most common types of ranking algorithms are: 

 Binary Ranking Algorithms: Binary ranking algorithms are the simplest type of ranking 
algorithm. A binary ranking algorithm ranks items in a dataset according to their relative 
importance. The two most common types of binary ranking algorithms are the rank-by-feature 
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and the rank-by-frequency algorithms. Rank-by-feature algorithms rank items by the number of 
features that they have in common with the reference item. The reference item is the item that is 
used to calculate the similarity value for each of the other items in the dataset. Rank-by-
frequency algorithms rank items by the number of times that they occur in the dataset. Both 
rank-by-feature and rank-by-frequency algorithms have their own set of advantages and 
disadvantages. Rank-by-feature algorithms are more accurate than rank-by-frequency 
algorithms, but they are also more computationally expensive. Rank-by-frequency algorithms are 
faster than rank-by-feature algorithms, but they are less accurate. 

 Ranking by Similarity: Ranking by similarity is a type of probabilistic ranking algorithm that 
ranks items in a dataset according to their similarity to a reference item. The reference item is the 
item that is used to calculate the similarity value for each of the other items in the dataset. The 
ranking algorithm uses the input data, such as the number of features that are common to both 
positive and negative examples, to calculate the item’s relevance score. The higher the relevance 
score, the more similar the item is to the reference item. There are many different types of 
ranking by similarity algorithms, each with its own set of advantages and disadvantages. Some 
common types of ranking by similarity algorithms are clustering ranking algorithm, vector space 
ranking algorithm, etc. 

 Ranking by Distance: Ranking by distance algorithms are a type of probabilistic ranking 
algorithm that rank items in a dataset according to their distance from a reference item. The 
reference item is the item that is used to calculate the distance value for each of the other items in 
the dataset. The ranking algorithm uses the input data, such as the number of features that are 
common to both positive and negative examples, to calculate the item’s relevance score. The 
higher the relevance score, the more distant the item is from the reference item. There are many 
different types of ranking by distance algorithms, each with its own set of advantages and 
disadvantages. Some common types of ranking by distance algorithms are Euclidean distance 
algorithm, Mahalanobis distance algorithm, etc. 

 Ranking by Preference: Preferential ranking algorithms are a type of probabilistic ranking 
algorithm that rank items in a dataset according to their preference for a reference item. The 
reference item is the item that is used to calculate the preference value for each of the other items 
in the dataset. The ranking algorithm uses the input data, such as the number of features that are 
common to both positive and negative examples, to calculate the item’s relevance score. The 
higher the relevance score, the more preferred the item is for the reference item. 

 Ranking by Probability: Ranking by probability is a type of probabilistic ranking algorithm 
that ranks items in a dataset according to their probability of being a positive example. The 
ranking algorithm uses the input data, such as the number of features that are common to both 
positive and negative examples, to calculate the item’s relevance score. The higher the relevance 
score, the more likely the item is to be a positive example. Ranking by probability is different 
from other types of ranking algorithms because it takes into account the uncertainty of the data. 
This makes it more accurate than other types of ranking algorithms. There are many different 
types of ranking by probability algorithms, each with its own set of advantages and 
disadvantages. Some common types of ranking by probability algorithms are Bayesian Ranking 
Algorithm, AUC Ranking Algorithm, etc. 

Conclusion 
Ranking algorithms are used to rank items in a dataset according to some criterion. There are many 
different types of ranking algorithms, each with its own set of advantages and disadvantages. Ranking 
by similarity, distance, preference, and probability are the most common types of ranking algorithms. 
Ranking by probability is the most accurate type of ranking algorithm because it takes into account 
the uncertainty of the data. If you would like to learn more about ranking algorithms, please drop a 
comment below. 

 


